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Background

Betti numbers characterize topological spaces

• β0 connected components

• β1 cycles

• β2 voids

Issues

• Great for manifolds (which are usually unknown)

• But instead approximated via samples

• Topology on samples is noisy
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Background

• In simplicial homology, Betti numbers can be calculated1 from a simplicial complex.

• To define a simplicial complex we first need to define simplices:

• A k-simplex is the convex hull of k + 1 vertices.

1
formally, the i-th Betti number is the rank of the i-th homology group of the simplicial complex

2
image source: https://umap-learn.readthedocs.io/en/latest/_images/simplices.png
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Background

• A simplicial complex K is a set of simplices fulfilling two criteria:

1. Every face of a simplex in K is also in K.

2. Any non-empty intersection of two simplices in K is a face of both simplices.

• Example:

1
image source: http://bastian.rieck.me/research/talks/an_introduction_to_persistent_homology.pdf
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Background

• How do we arrive at a simplicial complex from a point cloud? Which points should be

connected?

• Problem: Adding or removing single points would change the Betti numbers of the

resulting simplicial complex.

• This issue motivated persistent homology: Using a varying distance threshold ε, we can

extract a nested sequence of simplicial complexes to extract topological features over

varying scales (‘multi-scale Betti numbers’).
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Persistent homology (PH)3

Vietoris-Rips Complex2: We ‘grow‘ a neighbourhood graph (simplicial complex for higher

dimensions) and keep track of the appearance and disappearance of topological features.

E :=
{

(u, v) | dist (pu, pv ) ≤ ε
}

Filtration:

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn−1 ⊆ Kn = K

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

ε1

ε2

(ε1, ε2)

2Vietoris [1927]
3Edelsbrunner and Harer [2008] Topological representation learning Michael Moor 9/35
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Persistent homology II
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Neural persistence: A complexity measure for deep neural networks using alge-

braic topology 4

w ′0 = 1 w ′1 = 0.5 w ′2 = 0

⊆ ⊆

l0 l1 l0 l1 l0 l1

w
′ d

w ′c

Illustrating the neural persistence calculation of a network with two layers (l0 and l1). Colours

indicate connected components per layer. The filtration process is depicted by colouring

connected components that are created or merged when the respective weights are greater

than or equal to the threshold w ′i .

NP(Gk) := ‖Dk‖p :=
( ∑

(c,d)∈Dk

pers(c , d)p
) 1

p

(1)

4Rieck et al. [2018]
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Neural persistence for monitoring neural network training

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Neural persistence

Ji
tt

er

Neural persistence values of trained perceptrons (green), diverging ones (yellow), random

Gaussian matrices (red), and random uniform matrices (black). Dots indicate actually

computed NP values while crosses indicate a predicted lower bound.

This was joint work with

Bastian Rieck, Matteo Togninalli, Christian Bock, Max Horn, Thomas Gumbsch, and Karsten

Borgwardt.
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So we can observe and monitor topological features of neural networks, but can we influence

them?
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Topological autoencoders

A method for preserving topological features of the data space in low-dimensional

representations [Moor et al., 2019].

This was joint work with Max Horn, Bastian Rieck, and Karsten Borgwardt.
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Overview

Z
Latent code

X
Input data

X̃
Reconstruction

Reconstruction loss

ε

ε

ε

ε
Topological losssimilar?

∇?
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Proposed Method

• Given a point cloud X , we denote the persistent homology (PH) calculation of its

Vietoris-Rips complex Rε(X ) as:(
DX , πX

)
:= PH(Rε(X )) (2)

where DX refers to the resulting persistence diagram (0-dimensional for now), and πX

stands for the corresponding persistence pairings, i.e. the set of indices pointing to the

subset of simplices in Rε(X ) which the PH calculation identified as topologically relevant.
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Proposed Method

• Introducing this persistence pairing πX allows for a notational trick. We can access the

values of the persistence diagram by selecting the corresponding entries in the pointcloud’s

distance matrix AX .

• AX
[
πX
]

is treated as a vector in R|π
X |.
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Distance matrix vs persistence diagram

Distance matrix A
0 1 2 10

1 0 8 2

2 8 0 3

10 2 3 0



Index: π

Persistence diagram

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

ε1

ε2

Notation:

AX = distance matrix of mini-batch in data space

πX = index set resulting from PH calculation in data space

AX
[
πX
]

= vector of distances selected with πX
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Proposed Method

• Let X be a point cloud representing a mini-batch from the data space X .

• Now we define an autoencoder as the composition of two functions h ◦ g , where

g : X → Z represents the encoder and h : Z → X represents the decoder. We denote

latent codes with Z := g(X ).

• During a forward pass of the autoencoder, we compute the persistent homology of the

mini-batch in both the data as well as the latent space, yielding the following set of tuples:

(
DX , πX

)
:= PH(Rε(X )) and

(
DZ , πZ

)
:= PH(Rε(Z )) (3)

Topological representation learning Michael Moor 19/35



Proposed Method

• Both diagrams DX and DZ are compared in order to construct a topological loss term Lt

• We add Lt to the standard reconstruction loss term Lr to arrive at the following

optimisation objective

L = Lr

(
X , h(g(X ))

)
+ λLt , (4)

where λ ∈ is a parameter to control the strength of the regularisation.
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Proposed Method

• Before diving into the topological loss term, let’s visualize selected distances:

AX
[
πX

]
AZ

[
πZ

]

Intersection

• Problem: At the beginning, a randomly initialized latent space shows little overlap in

terms of which distances are selected (1 in expectation). How to create a non-naive loss

term that still matches the ‘edges‘ in both spaces?
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Proposed Method

• Constraints:

1. In the latent space, we wish to preserve the input topology as represented by AX
[
πX

]
2. Only AZ depends on the autoencoder’s parameters and leads to informative gradients.

(a) AX
[
πX

]
(b) AZ

[
πZ

]
(c) Intersection

(d) Union

• We propose to consider the union of all selected distances / edges both in AX
[
πX
]

and

AZ
[
πZ
]
.
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Proposed Method

• To implement this, our topological loss term decomposes into two components, each

handling the “directed” loss occurring as topological features in one of the two spaces, i.e.

either the data space X or the latent code Z , remain fixed.

• We have Lt = LX→Z + LZ→X , where

LX→Z :=
1

2

∥∥AX
[
πX
]
− AZ

[
πX
]∥∥2

and LZ→X :=
1

2

∥∥AZ
[
πZ
]
− AX

[
πZ
]∥∥2

, (5)
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Topological loss term

Lt = LX→Z + LZ→X

LX→Z := 1
2

∥∥AX
[
πX
]
− AZ

[
πX
]∥∥2 LZ→X := 1

2

∥∥AZ
[
πZ
]
− AX

[
πZ
]∥∥2
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Proposed Method

This topological loss term is differentiable under the following assumption:

Assumption

There is an infinitesimal neighbourhood around each point in a persistence diagram that

only contains this single point. Thus, the corresponding persistence pairing π does not

change upon a small perturbation of the underlying distances.
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Gradient Derivation

• Letting θ refer to the parameters of the encoder, we have

∂

∂θ
LX→Z =

∂

∂θ

(
1

2

∥∥AX
[
πX
]
− AZ

[
πX
]∥∥2
)

= −
(
AX
[
πX
]
− AZ

[
πX
])>(∂AZ

[
πX
]

∂θ

)
(6)

= −
(
AX
[
πX
]
− AZ

[
πX
])>|π

X |∑
i=1

∂AZ
[
πX
]
i

∂θ

, (7)

where
∣∣πX
∣∣ denotes the cardinality of a persistence pairing and AZ

[
πX
]
i

refers to the i-th

entry of the vector of paired distances.
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Proposed Method: Stability

• We aim to capture topological features of the data and latent space. Yet, we only

calculate topological features on the mini-batch level.

• In two theorems, we address whether this is approximation is stable:

1. In Theorem 1, we show that the bottleneck distance between persistence diagrams of a point

cloud X and its subsample Xm of m points is bounded by the Hausdorff distance between X

and Xm.

2. In Theorem 2, we derive an upper bound of the expected Hausdorff distance between X and

Xm.
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Experiments



Spheres

PCA t-SNE

Autoencoder UMAP Topo-AE
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FashionMNIST Xiao et al. [2017]

PCA t-SNE

Autoencoder UMAP Topo-AE
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Further architectures

PCA TopoPCA

VAE Topo-VAE
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Insights and Summary

• Novel method for preserving topological information of the input space in dimensionality

reduction

• Under weak theoretical assumptions our topological loss term is differentiable and permits

the training of neural networks via backpropagation.

• Approximating topological features on the mini-batch level is robust.

• Our method was uniquely able to capture spatial relationships of nested high-dimensional

spheres

• The proposed loss term is highly generic, can be employed in various architectures, and

merely requires distances between data objects.
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Outlook

• A current bottleneck for many PH-based approaches in ML is to scale up the

dimensionality of the persistence calculation. This could be achieved with approximations

or parallelism.

• Applications, where the structure of high-dimensional data is relevant but currently hard

to recover, e.g. in the life sciences.

• Topological data analysis (TDA) is officially “taking off” in the ML community, with the

first Neurips 2020 Workshop Topological Data Analysis and Beyond!

Topological representation learning Michael Moor 32/35

https://tda-in-ml.github.io/


Further TDA projects from (or with) our lab

• Graph Filtration Learning (ICML 2020)

• A Persistent Weisfeiler–Lehman Procedure for Graph Classification (ICML 2019)
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https://arxiv.org/abs/1905.10996
http://proceedings.mlr.press/v97/rieck19a/rieck19a.pdf


For further information, please check out our

Paper: Code:

https://arxiv.org/abs/1906.00722

Credits:

• Aleph for TDA calculations https://github.com/Pseudomanifold/Aleph

• manim for animations https://github.com/3b1b/manim
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Appendix



Bound of bottleneck distance between persistence diagrams on subsampled data

Theorem

Let X be a point cloud of cardinality n and X (m) be one subsample of X of cardinality m, i.e.

X (m) ⊆ X, sampled without replacement. We can bound the probability of the persistence

diagrams of X (m) exceeding a threshold in terms of the bottleneck distance as

P
(

db

(
DX ,DX (m)

)
> ε
)
≤ P

(
dH

(
X ,X (m)

)
> 2ε

)
,

where dH refers to the Hausdorff distance between the point cloud and its subsample.



Expected value of Hausdorff distance

Theorem

Let A∈n×m be the distance matrix between samples of X and X (m), where the rows are

sorted such that the first m rows correspond to the columns of the m subsampled points with

diagonal elements aii = 0. Assume that the entries aij with i > m are random samples

following a distance distribution FD with supp(fD) ∈≥0. The minimal distances δi for rows

with i > m follow a distribution F∆. Letting Z := max1≤i≤n δi with a corresponding

distribution FZ , the expected Hausdorff distance between X and X (m) for m < n is bounded

by:

E
[
dH(X ,X (m))

]
= EZ∼FZ

[Z ] ≤
+∞∫
0

(
1− FD(z)(n−1)

)
dz ≤

+∞∫
0

(
1− FD(z)m(n−m)

)
dz



Density distribution error

Definition (Density distribution error)

Let σ ∈>0. For a finite metric space S with an associated distance dist(·, ·), we evaluate the

density at each point x ∈ S as

fσ
S(x) :=

∑
y∈S

exp
(
−σ−1 dist(x , y)2

)
,

where we assume without loss of generality that max dist(x , y) = 1. We then calculate fσ
X (·)

and fσ
Z (·), normalise them such that they sum to 1, and evaluate

KLσ := KL
(

fσ
X ‖ fσ

Z
)
, (8)

i.e. the Kullback–Leibler divergence between the two density estimates.



Quantification of performance

Data set Method KL0.01 KL0.1 KL1 `-MRRE `-Cont `-Trust `-RMSE Data MSE

Spheres

Isomap 0.181 0.420 0.00881 0.246 0.790 0.676 10.4 –

PCA 0.332 0.651 0.01530 0.294 0.747 0.626 11.8 0.9610

TSNE 0.152 0.527 0.01271 0.217 0.773 0.679 8.1 –

UMAP 0.157 0.613 0.01658 0.250 0.752 0.635 9.3 –

AE 0.566 0.746 0.01664 0.349 0.607 0.588 13.3 0.8155

TopoAE 0.085 0.326 0.00694 0.272 0.822 0.658 13.5 0.8681

F-MNIST

PCA 0.356 0.052 0.00069 0.057 0.968 0.917 9.1 0.1844

TSNE 0.405 0.071 0.00198 0.020 0.967 0.974 41.3 –

UMAP 0.424 0.065 0.00163 0.029 0.981 0.959 13.7 –

AE 0.478 0.068 0.00125 0.026 0.968 0.974 20.7 0.1020

TopoAE 0.392 0.054 0.00100 0.032 0.980 0.956 20.5 0.1207

MNIST

PCA 0.389 0.163 0.00160 0.166 0.901 0.745 13.2 0.2227

TSNE 0.277 0.133 0.00214 0.040 0.921 0.946 22.9 –

UMAP 0.321 0.146 0.00234 0.051 0.940 0.938 14.6 –

AE 0.620 0.155 0.00156 0.058 0.913 0.937 18.2 0.1373

TopoAE 0.341 0.110 0.00114 0.056 0.932 0.928 19.6 0.1388



Quantification of performance - 2

Data set Method KL0.01 KL0.1 KL1 `-MRRE `-Cont `-Trust `-RMSE Data MSE

CIFAR

PCA 0.591 0.020 0.00023 0.119 0.931 0.821 17.7 0.1482

TSNE 0.627 0.030 0.00073 0.103 0.903 0.863 25.6 –

UMAP 0.617 0.026 0.00050 0.127 0.920 0.817 33.6 –

AE 0.668 0.035 0.00062 0.132 0.851 0.864 36.3 0.1403

TopoAE 0.556 0.019 0.00031 0.108 0.927 0.845 37.9 0.1398
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