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Framing assumptions for this talk

• on some very fine scale, most instances of streamed information
can be conceptually modelled as (rough) path segments
γu,u ∈ [s, t]

• we are interested in such streams because of their potential
effects and applications, in addition to their value at any given time

• Unparameterized path segments are a real-world data type
the signature of a path transforms a path segment γ in the Banach
space V into a sequence of tensors within the algebra T((V)). This
non-commutative exponential is obtained by evaluating the solution St
of the controlled differential equation dSu = Su ⊗ dγu, Ss = 1.
the signature of a path characterises a path up to a generalised
re-parameterization (treelike equivalence) [3], [1]. We call the set of
unparameterized paths Ω(V). The signatures of unparameterized
paths form a subgroup G of the grouplike elements in T((V)). Each
path has a unique tree reduced and unparameterised representative.
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The fundamental questions

The signature representation filters out a symmetry made more
powerful because we can answer the basic questions
• Understanding the spaces of functions on G.
• Give structure to the space of “polynomial” functions on G.

However, the signature is big, and does not directly offer a way of
describing the data that is scalable and localisable. Logsignature -
there is a hall basis, but the coefficients are global -change the basis
elsewhere and you change the coefficients here.
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Explicit algebraic bases

• Evaluating a function on a particular stream has a cost. After all it
involves testing the stream γ in some way.

• Having evaluated f(γ) and g(γ) the cost of additionally evaluating
f(γ)g(γ) is a scalar multiplication without reference to the stream
γ.

• Identifying an algebraic basis splits the process of evaluating a
“polynomial” function on G into two parts:

• evaluating the basis sensors on the underlying data γ and then
• evaluating a unique polynomial function in these expensive but
informative precomputed values

• Moreover if the bases are defined hierarchically using Hall sets,
they can be computed recursively in a localised way (to compute
one, one must compute its ancestors but not others).
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The results in this work
• give a direct proof of [2]: polynomials in pure areas generate the
shuffle algebra

• prove that polynomials in Hall integrals uniquely generate the
shuffle algebra

• prove that polynomials in Hall areas uniquely generate the shuffle
algebra

These results are fundamental structure theorems for streamed
information. Polynomial functions split uniquely into two components -
• a first that engages with the underlying stream and which is
potentially evaluated via some “physical” integration process that
responds to the underlying signal

• is intrinsically nasty operator
• controlled differential equations are not closable in the uniform
topology on γ - see [4]

• and a second that is a robust and continuous numerical
polynomial evaluation made without reference to the stream.
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Words as functions on paths
If A is an alphabet of d letters, then the tensor algebra is the space
spanned by words

T ((A)) = R ⊕ V 〈A〉 ⊕ V 〈A〉⊗2 ⊕ . . .

Definition

Let I ⊂ R+ be a compact time interval and let γ ∈ C1(I,V) be a
continuous path of bounded variation. For any sub-interval [a,b] ∈ I
define the signature Sig(γ)[a,b] of the path γ over [a,b] as the following
element of T(V)

Sig(γ|[a,b]) = 1+
∞

∑
k=1

∫
...

∫
a<t1<···<tn<b

dγt1 ⊗ ...⊗ dγtn

w(γ|[a,b]) =
∫

...
∫

a<t1<···<tn<b

〈
w1,dγt1

〉
⊗ ...⊗

〈
wn,dγtn

〉
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Products and shuffles

These words span an algebra of real functions on path segments (the
shuffle algebra) that contains the constants and separates paths (that
are distinct modulo paramterisation)

〈f � g, x〉 = 〈f , x〉〈g, x〉 (1)

Definition
Let u and v be words inWA then the shuffle product u� v is defined on
T(A) as follows
• u� e = e� u = u
• au� bv = a(u� bv) + b(au� v).

Salvi… (NEMSA) Hall areas shuffle generate 13/1/2021 7 / 28



Functions on paths as real valued paths

Let I ⊂ R+ be a compact time interval and let γ ∈ C1(I,V) then we can
define the historical path of γ in path space

u ∈ I → γ|[a,u]

w (γ)u = w
(

γ|[a,u]
)

Empty word goes to the path that is identically 1. For all other words
the real valued path begins at zero. We can think of words as sensors.
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Combining sensors

• Words are sensors that convert the path into a real number
evolving in time.

• A letter w simply projects the path increment onto that channel

w (γ)v :=
∫ u=v

u=a
〈w,dγu〉

• Suppose that σ and τ are two elements of the shuffle algebra then
new sensors are

(σ ≺ τ) ()v : =
∫ u=v

u=γ−
τ ()u dσ ()u

areaA (σ, τ) : = σ ≺ τ − τ ≺ σ

• Remarkably both of these operation can be expressed in pure
algebra as operations in the shuffle algebra.
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The algebraic interpretation of integration

Definition

The left half shuffle ≺A: Sh(A)× Sh(A) → Sh(A) is a bi-linear form
initially defined on basis elements: If u is the empty word e then
u ≺A v := 0. If u is nonempty, then let the letters in u be given by
u = u1...un and define

u ≺A v := u1((u2 . . . un)� v) (2)

In particular, if u is a nonempty word then u ≺A e = u.
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Other trivial identities
• (FTC) Let e ∈ Sh(A) be the empty word, then for any x ∈ Sh(A)

x ≺A e = x− 〈x, e〉Ae (3)

This is an algebraic version of the statement:
∫ .
0 1 df = f(.)− f(0).

• (Product Rule) It is easy to check from the definition of half shuffle
that for any x, y ∈ Sh(A) the following relation is satisfied

(x� y) ≺A e = x ≺A y + y ≺A x (4)
• (Integration by parts) Rewriting the left hand side in the product
rule gives that for any x, y ∈ Sh(A)

x� y − 〈x, e〉A〈y, e〉Ae = x ≺A y + y ≺A x (5)
• (Chain rule) It follows directly from the definition of ≺A that for any
x, y, z ∈ Sh(A)

x ≺A (y� z) = (x ≺A y) ≺A z (6)
• This is an algebraic version of the statement:∫ .

0 fgdh =
∫ .
0 fd(

∫ .
0 gdh).
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The Salvi identities

Lemma (Shuffle-pullout identity)

For any triple x, y, z ∈ Sh(A) the following relation is satisfied

3 areaA(z, x� y) = x� areaA(z, y) + y� areaA(z, x)− x� y� z
+ areaA(areaA(z, y), x) + areaA(areaA(z, x), y)

Lemma (Area-Jacobi identity)

For any triple x, y, z ∈ Sh(A) the following relation is satisfied

areaA(areaA(x, y), z) + areaA(areaA(y, z), x) + areaA(areaA(z, x), y)
= x� areaA(y, z) + y� areaA(z, x) + z� areaA(x, y)
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The computational magma

Definition
M(A) denotes the magma over A. M(A) is the minimal set satisfying
∀a ∈ A, (a) ∈ M(A) and if τ′, τ′′ ∈ M(A) then (τ′, τ′′) ∈ M(A).

• [5] M(A) can be equivalently identified to the set of binary, planar,
rooted trees with leaves labelled in A. For a given element
t ∈ M(A) we will refer to the ordered collection of letters appearing
in its leaves as its foliage.

• M (A) is free. Any map from A to a space with a product extends
uniquely to a map from M (A). (for example the foliage map,
degree, multidegree).
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Pure Foliage, Pure Areas and Pure Integrals

• areaA(z, x) , z ≺ x are product operators on the shuffle algebra
defined on letters by the identity map.

• An element x of Sh(A) is a pure area if it is in the image under areaA
of the magma. That is to say, there exists a tree τ ∈ M(A) so that
x = areaA(τ).

• An element x of Sh(A) is a pure integral if it is in the image under ≺A
of the magma. That is to say, there exists a tree τ ∈ M(A) so that
x = ≺A(τ).

Theorem
[2, Corollary 5.6] Any element in Sh(A) can be written as a shuffle
polynomial in pure areas {areaA(τ) | τ ∈ M(A)}.
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Areas of shuffles

Theorem
For any n ≥ 1 and any n pure areas A1, . . . ,An and an additional pure
area A, the following relation holds

areaA(A,A1� . . .� An) = βnA� A1� . . .� An + Q

where βn = −(n− 1)/(n+ 1), and Q is a shuffle polynomial in pure
areas of shuffle-degree at most n.
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Polynomials in areas span
Lets write a word as a polynomial in Hall words. If |w| > 0, w can be
written as follows

w = av = a ≺A v

where v ∈ WA is of word of length |v| = n− 1 and a ∈ A ⊂ S(A) is a
letter. Moreover for any elements of S(A)

a ≺A v =
1
2
(areaA(a, v) + a� v− < a, e >< v, e > e)

=
1
2
(areaA(a, v) + a� v)

since a is a letter. The length of the word v is equal to n− 1, so by
induction it can be written as a polynomial in pure areas of
shuffle-degree n− 1. Hence, the term a� v is a shuffle polynomial in
pure areas of shuffle-degree n. By the area of shuffles, the term
areaA(a, v) is also a polynomial in pure areas of shuffle-degree n, and
so w a polynomial in pure areas of shuffle-degree n.
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Ancestral orders and Hall sets

Definition
A total order < on a sub-magma M is an ancestral order if for any tree
t = (t′, t′′) ∈ M(A) of degree ≥ 2 one has t < t′′.

Definition
A sub-magma H of M(A) is a Hall set if
• < is an ancestral order on H.
• A ⊂ H.
• For any tree h = (h1,h2) ∈ M(A) of degree ≥ 2 one has h ∈ H if
and only if:

• h1,h2 ∈ H and h1 < h2
• either h1 ∈ A or h2 ≤ h′′1 where h1 = (h′1,h

′′
1).

Hall sets exist!
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Hall sets exist

Lemma
Hall sets exist, any ancestral order on the full magma leads in a
canonical way to to a unique Hall set, and every Hall set can be
obtained in this way.

Lemma
[5, corollary 4.14] The number of Hall trees of degree n and the
dimension of the space of homogeneous Lie polynomials of degree n are
equal to

DH =
1
n ∑
d|n

µ(d)qn/d

where µ is the Mobius function.
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Hall Words, Hall areas, Hall Integrals

• An element x of Sh(A) is a Hall area if it is in the image under areaA
of the Hall set. That is to say, there exists a tree h ∈ H ⊂ M(A) so
that x = areaA(h).

• An element x of Sh(A) is a Hall integral if it is in the image under
areaA of the Hall set. That is to say, there exists a tree
h ∈ H ⊂ M(A) so that x = ≺A(h).

• Hall words are defined similarly using the foliage map f
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Decreasing sequences of hall words

Lemma
[5, Corollary 4.7] Every word w ∈ WA can be written uniquely as a
decreasing product of Hall words

w = f(h1)k1 . . . f(hn)kn , hi ∈ H,h1 > . . . > hn

Definition
If h ∈ H then because [] is a binary operator one defines [h] ∈ T (A)
Consider the collection of all decreasing sequences hi ∈ H,
h1 > . . . > hn then {[h1]k1 . . . [hn]kn} are the PBW basis for T(A).
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A shuffle basis from hall integrals

Theorem
Consider all decreasing sequences hi ∈ H, h1 > . . . > hn, and strictly
positive integers ki > 0; then the elements

Ak1h1 . . .Aknhn
k1! . . . kn!

(≺A (h1))�k1 � . . .� (≺A (hn))�kn

are the dual basis in Sh(A) to the PBW basis {[h1]k1 . . . [hn]kn} for T(A).
Every element of Sh(A) is uniquely expressible as a shuffle polynomial
in Hall integrals. Ah1 is the accumulated Lazard depth of h.

Definition
If h = (xh′′k) is the Lazard decomposition of h ∈ H, where
x = (x′, x′′),h′′ ∈ H and x′′ 6= h′′, then we define the Lazard depth αh of
h to be 1/k. The accumulated Lazard depth of h is defined recursively:
Ah = 1 if h ∈ A, otherwise h = (h′,h′′) and Ah = αhAh′Ah′′ .
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Any sensor is a polynomial in Hall Areas

Definition
A shuffle-polynomial in Hall areas is a linear combination of terms of
the form

areaA(h1)� . . .� areaA(hn), hi ∈ H. (7)

Theorem

Any element in Sh(A) can be written uniquely as a shuffle-polynomial in
Hall areas {areaA(h) | h ∈ H}.
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Proof ideas

Definition

Given X we define
• • M(X) the free magma

• T((X)) the tensor algebra of infinite tensor series
• L(X) the free Lie sub-algebra of T(X)
• WX the space of words in the alphabet X and a canonical basis for
T(X)

• Sh(X) the dual space to T((X))
• W∗

X the dual basis toWX
• ≺X , areaX , 〈 , 〉X the various products on these spaces

Now consider a particular choice of X based on a lower central series
decomposition of L(A).
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Elimination trick
• Let c be the greatest element of A with respect to the ancestral
ordering <. Define the subset of trees

X = {(acn),a ∈ A \ {c},n ≥ 0} ⊂ M(A) (8)

• A treacherous path - implications in Shuffles are contravariant.
• L(X) is a Lie ideal and sub-algebra of co-dimension one in L(A)

Lemma
[5, Theorem 0.6] The Lie algebra L(A) is the semi-direct product of L(X)
and Rc

L(A) = L(X)n Rc (9)
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The Main Result

Theorem
For any magma M(A), ancestral ordering<, Hall set H on M(A), and any
Hall tree h ∈ H there exists a unique collection of Hall trees
h1, . . . ,hn ∈ H with the same multidegree as h and scalars
α1, . . . , αn ∈ R such that

≺A (h) =
n

∑
i=1

αiareaA(hi) + P (10)

where P is a shuffle polynomial in areas of Hall trees s ∈ H. Moreover
each monomial in this sum is a (shuffle) product of two or more Hall
areas and has a net A-multidegree equal to the A-multidegree of h; in
particular every Hall tree defining the Hall areas in P has A-degree
strictly less than the A-degree of h.
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A shuffle basis - more abstraction

Lemma
Any element of Sh(A) is a polynomial on the vector space that is the free
Lie algebra L (A)

Proof
Recall that L (A) ⊂ T (A) and that we can take exponentials to get the
grouplike elements or signatures. S ∈ Tn (A) is a truncated signature if
and only if for some l ∈ Ln (A) one has S = exp l. If x is a word we may
consider the coordinate iterated integral 〈x,S〉 as a real valued function
on the signatures. Choose a basis li to L (A) that is homogeneous. Then〈

x, exp∑ λili
〉

is, by expanding the exponential and stopping at an appropriate
degree, a finite polynomial in λi.
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Linear Polynomials
If V is a vector space and xi are an ordered basis for V∗ then every
polynomial P (v) on V is a unique linear combination of decreasing
products of products of xi (v). So it is tempting to think that the
〈≺A (h), exp∑ λili〉 are linear functions on the λ and that they are
idependent. But they are not linear!

Example
Any polynomial function on R2can be uniquely written as a polynomial
in x, y + x2

Problem
What are the linear polynomials on L (A)? Define M ⊂ Sh (A) by

M :=
{
x | ∀l, l′ ∈ L (A) ,

〈
x, exp

(
l+ l′

)
−

(
exp (l) + exp

(
l′
))〉

= 0
}

At least A ⊂ M. Can we identify M, find a basis for M that is treelike,
local.
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