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Lloop Shaces

The loop space QX of a topological space X is the set of all continuous maps 8* — X
endowed with the compact-open topology

In general (X is not finite-dimensional (even if X is)

() is a homotopic adjoint to suspension: |Y, QX] ~ [XY, X]|

[t satisfies 71; (A X) ~ 7,1 (X)
There is a nice product OX x QX — QX (if you're happy to choose a basepoint)

Loop spaces are ground zero for spectra and stable homotopy theory




Differential Forns

The familiar tools won’t help much with computing the cohomology groups H®(QX; R)
— for most X there are no known cellular models for QX [even X = S” is hard!]

When X is a smooth manifold, one can try to exploit its deRham complex C3, (X) to learn
something about the cohomology of ()X

Here CZR (X) is the space of differential i-forms on X; in local coordinates (x1, ..., x;) this
space has a basis {dx; Adxj, A---Ndxj | j1 < jo < --- < ji} over the ring of smooth
functions X — IR

And d is the exterior derivative; for w = f(x;,...,xy) dox; NN

dw = Z oy dxk N dxj

Idea [K.-T. Chen, 1951+]: Relate the differential graded algebra H3, (X) to the differential
graded algebra H3, (Q)X)




lterated Integrals

/wl---wk € Cl.(QX)
p=_(i1+-+i)—k

Wheni; = --- = iy = 1, then p = 0 and [ wy - wy is just a function OX — R; let’s
evaluate itat ¢ : [0,1] — X when dim X = 2 in local coordinates (x, v)

For w; = dx and w, = dy, this function evaluates to

o] - [ [ 010

Thm [Chen]: The image of [ is a differential graded subalgebra of H3, (QX)




Shuffle Products

A permutation of {1,...,k + ¢} is called a (k, ¢)-shuffle if we have both
(1) < '(2) <--- < w7 l(k), and
nlk+1) <mtk+2) < - <m YHk+4)

Thm [Chen]: Given forms wj, ..., wy¢ in Cjz(X), we have

le'“wk] A ka+1'“wk+4 :Zi/wn(l)”'wn(km

where 7 ranges over all (k, £)-shuffles



Plcard lteration

To solve an ODE dx/dt = f(x,t), start with the constant function x((¢) = ¢ and define
t
Yia(t) =+ [ flxi(t),

If f is Lipschitz, then the Picard-Lindel6f theorem applies; in this case, the limiting x; exists
and solves the ODE. Here’s the simplest non-silly example [f(x, t) = x]

xo(t) =1

t
xl(t):1+/ xo(t) dt =[1+ ¢
0

t 2
xo(t) =1+ [ w(t)dt = 1—|—t—|—%
0
t d t2 t3
t) =1 tydt ={14+t+ — + —
w5(t) =14 | w1 =

l ~




Controlled Differential Equations

A differential equation controlled by the path x : [0, 1] — R" has the form

dy(t) = f(y(t)) dx(¢)

where f is a function R” — Mat(m x n). A pathy: [0,1] — R™ is a solution if

In many cases of interest, f is a nice linear map, but the controlling paths x (and hence the
solutions y) are very far from smooth — so we can’t take any derivatives

We say that x has bounded variation if the supremum over partitions 0 < fp < --- <t <1
of the quantity ) ; ||x(¢;11) — x(¢;)|| is finite. Let BV(IR") denote the space of all bounded
variation paths in n-space

Idea [T. Lyons, 1998+]: Use Picard iteration to solve CDEs where x is in BV(IR") and f is a
linear map R" — Mat(m x n).




Solving CDEs

Replace f : R™ — Mat(m x n) with a map g : R" — Mat(n x n) as follows:

o(u) = [v Ny f(v)](u)] foru € R" and v € R”

Start Picard iteration as usual with the constant yy(t) = ¢, and ...

) =c+ [ gl(s) dx(s) =< 14, + [ dg(x(s))|

1a(0) = c-+ [ gl dx(s) = o (10, + [ dg(x(o) + [ [ dg(x(s)) - dglatu)]

All terms have the form

/0<t1 <<t <t




The FPath Signature o

~ |

The Signature of ¥ € BV(IR") is an element S(+) living in the
Tensor algebra T(IR")
T(R") = [ [ (R")="™

m>0

The m here indicates the level of the signature; it is customary
in practice to truncate below some fixed m

The m-th level has n” components




Glorious Properties

The first thing to note about S(1y) is that its components are evaluations of Chen’s iterated
integral functions [ [ w; - - - wg] (77) where each wj is dx,

If S(7) = S(9/) then v and v/ differ by a tree-like reparametrization

The signature satisfies S(y xd) = S(v) ® S(J) where x denotes the usual composition of
paths [0, 1] — R" by concatenation

Each multi-index [ = (i1, - ,i;) with i, € {1,...,n} corresponds to a component S;(7)
in level k of the signature

By the shuffle product identity, we have
S1(7) - Sj(7) = 2 Sk(7)
K

where K ranges over (I, [)-shuffles, so the higher-level components of S are algebraically
dependent on the lower ones




Statistical Inference

The signature maps the very complicated space BV(V) of any vector space V into the
very complicated tensor algebra T(V) — there is no reason to suspect a priori that this
machinery can be made useful in broader contexts

But the truncated signature is a fantastic feature map for all sorts of nonlinear data that can
be embedded into BV (V) for some artfully chosen V

Many success stories for classification tasks that involve time-varying data — handwriting
and gait recognition, financial stream data analysis etc.




More Glorious Properties

Let B be the quotient of BV (V) by tree-like equivalence, and let K C B be a compact subset;
the signature map S : K — T(V) is:

Universal: For each continuous f : K — R and € > 0, there exists a linear functional
L:T(V)— R satisfying

sup |f(v) — (L, S(Y))| <€

vEK

Characteristic: Borel probability measures y on K are characterized by their signature
means; namely, the map Bor(K) — T(V) given by

u— By [S(7)]

1s injective!

Kernelizable: If V is a Hilbert space then the map ¥ : K x K — R given by setting
k(v,7") = (S(7),5(7")) forms a bounded, continuous, universal and characteristic kernel




Topological Data Analysis

Finite Metric Space

Filtered Simplicial Complex

1111111 —[= -

Neural Network

Barcodes



Stalility Theorem




feature Maps for Barcodes

The space Bar of persistent homology barcodes is hideously non-linear, so even defining
averages in a consistent way is impossible. So there have been some efforts to find good
feature maps for machine learning from barcodes (also called persistence diagrams)
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Bar ———> BV (V) _S)T(V)
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The maps 1o are persistence path embeddings
And S is the usual signature map obtained by iterated integration



A Ihe Landscape Embedding

Barcodes can be transformed into landscape functions (Bubenik, 2012) and the
assignment is stable

Paths obtained as antiderivatives of landscapes are stable

Not difficult to extract landscape from barcode, but signatures of integrated
landscapes are hard



For each dim d and scale t, let B,;(t) be the number of bars in the d-th
barcode that contain ¢

_[ ﬁ The Beltl Embedding

The assignment t — B;(t) gives curves in R, where m is the largest dimension
of simplices encountered

Not stable, but quite computable and contains a lot of topologically invariant
information

The Euler Embedding

The easiest persistence path to compute: x(t) = Y ;(—1)%B,4(t) X
Or better yet, just compute alternating counts of simplices!

Also hopelessly unstable



_[ E The Envelope Embedding

0 1 m+1
Arrange bars in descending order of length, then connect-the-dots

Longer, stable bars appear before shorter, unstable ones




Method

Textures
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Persistence Paths and Signature Features in
Topological Data Analysis

llya Chevyreyv, Vidit Nanda, and Harald Oberhauser

Abstract—We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first
realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor
algebra of that vector space. The composition of these two operations — barcode to path, path to tensor series — results in a feature
map that has several desirable properties for statistical learning, such as universality and characteristicness, and achieves
state-of-the-art results on common classification benchmarks.

Index Terms—Topological data analysis, barcodes, signature features, kernel learning
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