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Let X:[0,7] — R smooth, indefinite signature of X given by
t t rs
St—Sig(X)t_(l,/ dX,/ / dX*dX,...)ER@Rd@(Rd)®2@..._:T((Rd))
0 0.Jo

satifies linear differential equations in 7 = (T'((R%)), +, %), with tensor (concatenation) product,
dS;=S*d Xy, So=1=(1,0,0,...)eT,

Power series calculus! In particular: exp,:7)— 7T, with inverse log.: 7, — T;



Log-signature of X given by

t t S
Lt:_logSt_..._<(),/dX,%// [dX,dX],...)E%ng@(Rd)@Q@...
0 0JO

Differential evolution: with S, =exp(Ly)

dSt:St dXt = €_Lt8t€Lt:Xt

. : . t ¢
Rmk: In commutative setting have L = e~ %*9,e’*, conclude Lt:deX — St:edeX.



Theorem (Hausdorff 1906) For explicitly computable G(2) =1+ g1z + g22*+ ... have

X;=e Ldelr=G(ad L) Ly:= L+ gi[L, L] + go[L, [L, L]] + -

L=H(ad L)X = X + hy[L, X]+ ho[L, [L, X]] + -



Computing L by recursion (a.k.a. Magnus expansion). Follows from

L=(0,LY L% . )eT”", X=(0,X,0,0,..)eT""
and

L=H(ad L)X = X + h[L, X] + ho[L, [L, X]] + -+

Explicit: L; :fng,L%: —é gf(')s [dX,.,dX,] ... and with general term (e.g. Wiki)

B t
T E aszlo,,,oaszkdXS, E=(l,ule), L= L [l =k, |[f]| =l + ...+ L
k=1 10|=k,|[¢]|=n—1, i



Why good idea?
respect geometry: el = el a L'+ + LY otill grouplike
sparsity: e.g. v=(0,v,0,0,..)€T 'vs. el=(1,v,0%/2,03/3!, . )eT ™"

“ultimate simplification, new insight, and superior computational algorithms” [A. Iserles]

www.ams.org » notices » fea-iserles - Diese Seite Ubersetzen

Expansions That Grow on Trees - American Mathematical ...

Expansions That Grow on Trees. Arieh Iserles. 430. NOTICES OF THE AMS. VOLUME 48,
NUMBER 4. Linear Ordinary Differential Equations. How to solve ...
von A Iserles - 2002 - Zitiert von: 53 - Ahnliche Artikel

arxiv.org » math-ph + Diese Seite (ibersetzen

The Magnus expansion and some of its applications

30.10.2008 - When formulated in operator or matrix form, the Magnus expansion furnishes an
elegant setting to built up approximate exponential ...
von S Blanes - 2008 - Zitiert von: 876 - Ahnliche Artikel



Part 11



Diamonds. Filtered P-space, all martingales continuous, A7 a Fp-measurable r.v.
X;: =logEe4T (note: X7 = A7)
Gatheral and coworkers, 2017/2020: (formal) diamond expansion

B, o2 X1 — (Xt 37— D(XeX)UT)+ 32, oFF (=:71)

Def: For semimartingales X, X’ on [0, 7], with (X, X'} € L', diamond product given by
(XoX)(T) :=E(X, X" )i r=E(X, X")r — (X, X');

Note: logE;e**7=: (conditional) cumulant generating function



where terms IF/*(z;T") satisfies a recursion.
[F-Gatheral-Radoicic 2020]. Define Y;: =E;Ar (note: Y= Ap).

Thm: Under natural integrability assumptions, for a, b small enough

EtanT+b<Y>T_€aY't+b< 122, 5.6 (a,b;T)

with G* = (1 a?+b)(Y oY) and recursion G" = 22” GG+ aY oG

. . 1 . . .
Special cases: (i) 5a2+b:() (exponential martingale case) = corrector (G vanishes

(i) b+ a/2=0, (rigorous) form of Alos et al. expansion (2017)
(iii) b=0, Lacoin-Rohdes-Vargas (2019)

Many applications! (Bessel identities, Levy's area formula, rough forward variance models..

)



Proof (Sketch): For generic (continuous) semimartingale Z, sufficiently integrable, set
AT =log Ee?tT & Ewefr=: eZit At
Trivially, the r.h.s is a martingale and from lto's formula

1 1
~ o A= Et<Zt,T‘|‘§<Z‘|‘ AT>t,T> = EtZt,T+§(Z+AT)§2(T)

Fix a,b. Apply to Z(\) = XaYr 4+ A?b(Y ). Note analyticity of A+ A% (\) near 0, matching
powers of A leads to stated recursion.



Markovian perspective on diamond expansion

X ...Markov diffusion with generator L. Recall (Feynman-Kac)

h(t,x): :Eta%/\("D(XTHftTS(S’XS)dS), satisfies (—0; — L)h=MAh&,  h(T,-)=e?.
Cole-Hopf h = e*?: With carre du champ operator, 2I'(f) := L(f?) —2fL f

L(f) =" (HLF+"(T(f),  L(e)=e*(ALv+ NT(v)).
Obtain a HJB equation with small (~~perturbative expansion) quadratic non-linearity
(=0 —L)v=Al'(v)+ & o(T,)=e.

Example (“KPZ with smooth noise”) L =02 Then I'(f):=|0.f|*.



Perturbative expansion of \v =log h leads to (“Wild expansion”, as in Hairer's KPZ paper)

A = )\v(t,az)—)\u'+)\2uv+>\32u\(f+>\4< +4u\(0>

— Z ATl _Z A\ Z o :Z AP

|I7|>1 n>1 n>1

T T?

with ©” = Kx((0,u™)(0,u™)), binary trees 7= |7y, 75| = v and |7| = #{leaves}.



Since every (binary) tree Twith |7|=n+1 leaves is of form 7 =11, 75|, we deduce with middle
summation below over all trees 71, 75 with |71| + |72| =n 4+ 1,

]Kn+1: Z UT:Z U[Tl,TQ]:““:%i IKz'OIKn—{—l—z’

T:|T|=n+1 1=1

which is the special case b =0 of the diamond expansion.

Message: Cumulants in Markovian setting described by HJB / KPZ type PDEs.

PS: Gaussian perspective on diamond expansion: consistent with Nourdin—Peccati (JFA "10)



Expected signatures (T. Lyons and many)
X:[0,7] —RY ... (sufficiently integrable) continuous semimartingale

Stratonovich indefinite signature of X given by
dS=So0dX, Sy=1=(1,0,0,...)€T

Expected signature given by pur:=ESr €T

Bonnier-Oberhauser '19 study signature cumulants
Kr:=log,pur & T =expykT

NB: we are back in (T'((R%)), +,%) =T



Example (Time-inhomogenous Brownian motion). Let d X; = o (t)d B;. Then
dS;=S;0dX,;=(...)dX +35:d(X, X)¢=(...)d B+ Swa(t)dt
with covariance matrix of X; given by a(t) =cc’(t)/2. With p;:=ES; € T as before, get
dpy = pea(t)dt

This is a linear ODE in T, with a(t) = (0, 0, ,0,0,...) €T

We then get the following

HT:Z]Og*“TZ</0Ta(t)dt—%/()T[/()ta(s)ds,a(t)dt]+"')



Example (cont’d). Assume a(?) E%Id i.e. X is standard Brownian motion in R?

Then all commutators vanish and we recover Fawcett's formula

Kk (X) zg x 1d & ESig(B)r = exp*<g X Id>



The unified functional equation

Z:[0,T] —R® ... (sufficiently integrable) continuous semimartingale. Recall (d=1):

1 1 1
Aif—logEteZt’T—Et<Zt,T+§<Z+AT>t,T> —Et<Zt,T+§<Z>t,T+ <Z»AT>t,T+§<AT>t,T>

Thm [F-Hager-Tapia '20] With r;: =k{ : =logE;Sig(Z|;. 7)) we have

1 1
ki = Et<Zt,T + §<Z>t,T +(Z, k") e+ §<"3T>t,T + (*)>

(%) = /tT(G_Id)(adm)d,H /t 46 (G —1d)(ad ) d[Z. K] +% /tT(Q_Id@z)(adm)d[[m,n]]



with e.g. (Z', k/*)e; ;0 €T 7, but [k, KF™]e;; @ epym €T “@T 7, and

oo o0

_ . (ady)™ © (adg)™
and  Q(ad,) = Z Z )(n + DI(m)!(n+m+2)

G(ad,) i

k=0 ' ' n=0 m=0

Note: G(0)=1d,  Q(0)=Td®1d, with (f © g)(a,b) = f(a) f(b), for f.g: T =T

Cor 1: For A] =Sym(k{), the (t-conditional) multivariate cumulants of Z; 7, we find the
“diamond” functional equation, but now in Sym((R?%)) =T((R%))/~.

1 1

- N . 1
Ri = Et(Zt,T + §<Z>t,T +{Z, R .7+ §<RT>t,T> =EZ; 7+

2(Z+ AT)§2T

with diamond product extended to Sym((R?))-valued semimartingales.



Cor 2: Apply to Z(t,w) = X (t) for a smooth path X:[0,7] — R

Can drop all E; and all brackets, and recover (backward) Magnus, with
T . .
ko= Ty 1+ / (G —Td)(adw)dk = — 7 = Glad )k < —f = H(ady) Z
/

Important remark: Our unified functional equation comes with a natural recursions / expansion,

which provides a common generalization of Magnus - and diamond expansions.

Rmk (Exercise): apply general theorem to recover k:=logESig( [ o (t)d By).



Markovian considerations
Computing Ey(...) is solving a (backward) PDE.

Ni,Lyons ('15) Expected signature g of Markov diffusion (at time 7"), Brownian motion stopped
at some 0 ...

In essence: p= (1, ut, p?, ...) satisfies triangular system of linear PDEs (parabolic resp. elliptic,
backward). Solved recursively,

pr=o(pl, .pt it <r<T)

Signature cumulants log p; = K, satisfies system of “non-linear” PDEs of KPZ type in T



Concluding remarks

So far, very general for continuous semimartingales.

What about general (cadlag) semimartingales? Yes! (F-Hager-Tapia arXiv2021)

Correct notion of signature? A: Marcus signature (F-Shekhar '15)

Signature cumulants described by generalized functional relation

Commutative setting: cumulants of semimartingales with “Ricatti” functional description
For classical affine processes: reduction to Riccati ODEs

For “rough” affine processes (Larson, Gatheral ...) reduction to Volterra Riccati DEs

New perspective on rough paths?



Thank you very much!



