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The mathematics of controlled systems - early days
The tools of integration, calculus, and (controlled) differential
equations make possible the mathematical modelling of interaction in
evolving systems. A massive contribution to science even without the
stirring of tea!

Newton, Isaac, Methodus fluxionum et serierum infinitarum
1671; The Method of Fluxions and Infinite Series; with Its Ap-
plication to the Geometry of Curve-lines... Translated from the
Author’s Latin Original Not Yet Made Publick. To which is Sub-
join’d a Perpetual Comment Upon the Whole Work... by J. Col-
son. 1736.

Already there in Newton’s work and language:

• systems that evolve
• Position (fluent)
• Direction (fluxion)

• one solves for the evolution of
• the fluents

• with a notion of control
• Relate (dependent)
• Correlate (independent)
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Newtons controlled equations

It is remarkable how close Newton’s work is to today.
• Using a power series (and the error function) he solved

dy = (1− 3x+ y + xˆ2+ xy) dx

• He used interacting controls and non-formulaic equations

dpi =
Gmimj

(
qi − qj

)
||qi − qj||3

dt

dqi = pidt
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Controlled equations today
Todays language.
• The basic framework connecting the control, a path xu ∈ U, and
the response or system state, a path yu ∈ V , is an equation

dyu = f (yu, xu) dxu

where f is a one form on U with values in the space of vector fields
on V . The f describes the system.

• By fixing a chart, enhancing the state variable to z = (x, y) and
slightly modifying the equation f to f̃ (z) (δx) := (δx, f (z) (δx)) one
locally replaces the equation with a related one

dzu = f̃ (zu) dxu

where U is a vector space and f̃ is a linear map from U into the
space of vector fields on V . Time dependence is dealt with in a
similar way. This is the usual model rough path people study.
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Reparameterisation invariance
There is a natural time reparameterisation invariance in this
formulation
Lemma (Gauge Invariance)
Suppose that xu ∈ U, and yu ∈ V and they solve the differential equation

dyu = f (yu) dxu (1)

and suppose further that that φ : R → R is smooth, then

dyφ(u) = f
(
yφ(u)

)
dxφ(u).

Historically there has been a tendency to think of the derivative ẋ of the
control x as ”the control” and follow Newton and write ẋdt instead of
dx; however, this hides the gauge invariance, forces the control to be
differentiable when this is not mathematically appropriate, and stops
one thinking of the controlled system (1) as a transformation on paths
that can be chained.
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Impulse controls, jumps, discrete data,
Impulses are events that happen quickly. There is a ”jump” in x at t0

Solution (Naive)
Use φ to add some “virtual time” between t−0 and t+0 and linearly
interpolate x at that time then solve

dyφ(u) = f
(
yφ(u)

)
dxφ(u).

Then speed up the virtual movement and return to the original
paramterisation with a jump.

This is canonical and may work well; it may be that something more
complicated is dictated by the context.

Fact
There is no issue dealing with jumps in x - there is a modelling question
- what happens to the system at a jump! Is the naive solution the correct
one. Alternative interpolations, different dynamics at jumps, ...
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Streamed Information is everywhere

• can be syncronous
• Wikepedia “A time series is a series of data points indexed (or listed
or graphed) in time order. Most commonly, a time series is a
sequence taken at successive equally spaced points in time.”

• a video
• fingerwriting on screen of mobile phone
• evolving facial emotion

• or asynchronous
• electronic health records
• financial feed from different stocks
• social data

• is not usually stationary in time
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controlled equations to describing streams

• Unified approach to studying
streams xu that evolve

• measure their effects as
controls,

• on special prototypical
equations

dSu = Su ⊗ dxu, St0 = 1

• The signature of the stream
• get a tensor description
St1 ∈ T ((U)) of x over the
interval [t0, t1].

• truncating this description
to level one tensors would
give a chordal description:
the frequency of words.

“Words differently arranged
have a different meaning, and
meanings differently arranged
have different effects.” Blaise
Pascal, Pensées (1670)
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unparamaterised paths - a gauge invariance

• The meaning of a path (xu,u)
does not depend on the
speed of traversal

• reparameterisation is a
symmetry

• the equivalence classes are
not linear

• wavelet transforms, fourier
series are seriously
challenged

• How does one describe a
multdimensional signal up to
reparameterisation?
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unparamaterised paths - a gauge invariance

• Return to those special
prototypical equations

dSu = Su ⊗ dxu, St0 = 1

and get a tensor description
S ∈ T ((U)) of x over the
interval [t0, t1].

• We call S the signature of the
path. It is a transform
converting the path into a
non-commutative group
element described by a
collection of definite iterated
integrals.

The curve is insensitive to
sampling rate. The signature
gives a top down description
that is insensitive to sampling
rate.
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Tensor algebras

• Let E be d-dimensional Banach space with basis E = {e1, . . . , ed}.
Denote by

T(E) =
∞⊕
k=0

E⊗k

and
T((E)) =

∞

∏
k=0

E⊗k

the spaces of formal polynomials, power series in the letters from
E .

• Words with letters in E are a basis.
• T () and T (()) are functors from the category of vector spaces to
that of algebras

• moreover one can introduce norms, T (E∗) ⊂ T ((E))∗ etc..
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The signature as a universal feature set for
unparameterised paths

• Suppose that x ∈ E is a finite stream of information defined on
[s, t] evolving in the vector space E.

• The signature is the solution of the universal CDE driven by x

dS(x)s,u = S(x)s,u ⊗ dxu , S(x)s,s = 1 = (1,0,0, . . .)

S(x)s,t = 1+
∫ t

s
S(x)s,u ⊗ dxu, S(x)s,s = 1 = (1,0,0, . . .)

• Informs about the stream x|[s,t] through the response S(x)s,t of the
exponential nonlinear system. (meaning without maths).

• If E is the formal span of a finite alphabet A = {a1,...,an} then
S ∈ T ((E)) the space of infinite formal linear combinations of words
with letters drawn from A. The solution lives in a vector space. S is a
feature map on streams!

• S does not depend on the parameterisation of the path segment. It
is a powerful nonlinear filter that removes sampling rate from data
and faithfully preserves the order of events, the curve. Hambly,
Lyons 2010 Chen 1958
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The range of the signature is a group

• The tensor algebra is associative algebra containing U
• Closed under multiplication

S(x)s,u ⊗ S(x)u,v = S(x)s,v

• Path run backwards gives the inverse
• Defining [u, v] := u⊗ v − v ⊗ umakes T ((U)) a Lie algebra; the
smallest Lie subalgebra L (U) containing U is free.

• Grouplike elements (Chen, Magnus, Bourbaki, Reutenauer, ...):

G = exp L (U) , L (U) = logG

• The functions on a group are a linear space with a pointwise
multiplication, the points of G are linear functionals on this space

• Now T (U∗) is dual to T ((U)), and G is a set of linear functionals on
it. Conversely T (U∗) ,� is a real abelian algebra of functions on G
that separates points and contains the constants. We have
recognised the functions on unparameterised paths.
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The polynomial functions on paths

• Classical results then tell us
• We can recognise a path through its representation as

• its signature
• its logsignature

• we can recognise a function on paths (Fliess)
• as a linear functional on the tensor algebra restricted to G
• a polynomial function on L

• Much interesting work still to be done
• Scalability can you work out parts of the signature
• Explanability can you work out which parts of the signature are used
• local or global (power series or smooth function)

• Measures on paths and expected signatures
• Rough path theory and regularity structures

• top down descriptions of complex systems, calculus, CDEs for
complex signals,....
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Multidimensional streamed data is an important class
for data.

• In the talks that come you will see a very gritty set of connections,
and I hope they will be of interest.

• The analysis of distributional data where the paths are already
expected signatures of measures on paths.

• The generic application of signature methods to data; does it work
as a package for the inexperienced.

• Given a corpus of streams, can we identify if a new stream is
anomolous, with an approach motivated by concentration of
measure?

• Can one use neural methods to identify the best (controlled)
differential equation models?

• Can signatures allow better integration of TDA into the normal
machine learning pipelines?

• Are there kernel methods for unparamterised streamed data and
are they useful?

• Computational examples https://www.datasig.ac.uk/examples e.g.
landmark-based human action recognition
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Kernels
Kernels form a useful tool in machine learning, they offer concrete
approaches to resolving the core problem data science problems, and
also can be very useful in reducing the dimension and complexity of
calculations
• What is a kernel?

• A set X embedded into E and E∗

φ : X ↪→ E
ψ : X ↪→ E∗

then one gets K (x, x′) := 〈φ (x) ,ψ (x′)〉 and conversely.
• Amari’s statistical manifolds of probability measures all have this
property

P 4µ → Lp (µ)

pdµ → p1/p

• Sometimes a Hilbert space (e.g. p = 2 in Amari)
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Kernel based regression

Although there are many issues, one cannot deny the convenience of
kernels. For every data point one gets a new function on points:
K (x, x′) := 〈φ (x) ,ψ (x′)〉.
• Kernels are useful for regression and machine learning

• Some real observational data
(
xj, yj

)
j=1...N then solve this system

yj = ∑
k=1...N

λkK
(
xj, xk

)
to express

• the observed function in terms of the kernel functions ψ (xi) ∈ E∗.

F (·) := ∑
k=1...N

λkK (·, xk)

• Crucially this calculation only depends on the N2 numbers K
(
xj, xk

)
and does not need the embedding - E can be infinite dimensional.
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Inner products

It is not clear that kernels should induce inner products, but when they
do, one can use Gaussian tricks. Symmetric kernels are an essential
component in algorithms for pattern analysis (Bishop, 1995; Hastie et
al., 2001; Scholköpf and Smola, 2002)
• suppose we have a symmetric and universal kernel

• Consider a gaussian random variable X ′ on E∗ with co-variance
given by the inner product on E .

E
[
X ′ (x1) X ′ (x2)

]
=< x1, x2 >, x1, x2 ∈ E

• A measure on functions (images).
• Can sample from the conditional distribution of X ′ given the
evaluations

(
xj, yj

)
j=1...N.

• Allows interpolation - get a random function defined everywhere
and consistent with the monochrome data.
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From alphabets to Hilbert spaces
The basis E = {e1, . . . , ed} ⊂ E induces structure on E and a path in E
is already a path in E∗ and a signature in T ((E)) is already in T ((E∗))
• • A basis for E⊗n is the words of length n with letters drawn from the

alphabet E :

{eK = ek1 ⊗ . . . ⊗ ekn}K=(k1,...,kn)∈{1,...,d}n

• The choice of E induces an inner product on E, E⊗n, T(E), T((E)).

〈ei1 ⊗ . . . ⊗ ein , ej1 ⊗ . . . ⊗ ejn〉 = δi1,j1 . . . δin,jn , δij =

{
1, if i = j,
0, if i 6= j.

• Making the canonical projection
πn : T = (T0, T1, . . . , Tn, . . .) → Tn ∈ E⊗n orthogonal.

• The inner product is
• Defined for A,B ∈ T((E)) as

〈A,B〉 =
∞

∑
n=0

〈πn(A),πn(B)〉
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Signature Kernels
Signatures exist over any interval and (for rough paths) decay
factorially.
• Suppose that x, X are rough paths/streams of finite 1 and p
variation over [s, t] and controlled by wx, wX;Let (s1, s2) ⊂ [s, t]

• then x, X have signatures:

(s1, s2) 7→ S(xs1,s2) = (1, x1s1,s2 , . . . , . . . , . . . , xms1,s2 , . . .) ∈ T((E))

(s1, s2) 7→ S(Xs1,s2) = (1,X1
s1,s2 , . . . ,X

bpc
s1,s2 , . . . ,Xm

s1,s2 , . . .) ∈ T((E))
• they are multiplicative functionals
• and they have factorial decay (neoclassical inequality)

||xks1,s2 ||E⊗k ≤ ωx(s1, s2)
k!

, ∀(s1, s2) ∈ ∆I

||Xk
s1,s2 ||E⊗k ≤ ωX(s1, s2)k/p

βp(k/p)!
, ∀(s1, s2) ∈ ∆I

• For any two unparameterised rough paths X and Y the signature
kernel K (X,Y) := 〈S(XI),S(YJ)〉 is always well defined.
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Oberhauser and Kiraly

• In their paper Kernels for Sequentially Ordered Data (Franz J.
Kiraly, Harald Oberhauser; JMLR 20(31):1-45, 2019) Franz and
Harald observed that a kernel on the space carrying the data
always implies a kernel on truncated signatures of sequences in
the implied linear space, and importantly.

• they use dynamic programming and low-rank techniques to
demonstrate that for the truncated signature kernel and bounded
variation paths there were efficient algorithms to compute this
truncated kernel.

• Harald, with his student Csaba, Bayesian Learning from Sequential
Data using Gaussian Processes with Signature Covariances. (Toth,
Csaba, and Harald Oberhauser., ICML in press (2020)) explored the
practical ramifications of this kernel in a range of practical contexts
and demonstrate its value.
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The Goursat PDE

It is easy to see that, unlike the truncated signature, the full signature
kernel is universal, but calculating it directly would seem to involve
infinite series of integrals with exponentially increasing numbers of
terms.
• This part of the talk is based on Computing the full signature kernel
as the solution of a Goursat problem (Thomas Cass, Terry Lyons,
Cristopher Salvi, Weixin Yang https://arxiv.org/abs/2006.14794)

• For any kernel there is a PDE. evaluating the full signature kernel
between two unparameterised paths

• The PDE is well defined, quick to compute, has numerics and
solutions for any rough streams. It is an interesting ”S”PDE!
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The basic statement

Theorem
Let I = [u,u′] and J = [v, v′] be two closed time intervals and let
x ∈ C1(I,E) and y ∈ C1(J,E). Consider the bilinear form
kx,y : I × J → R defined as follows

kx,y : (s, t) 7→ 〈S(x)s,S(y)t〉

then kx,y is a solution of the following linear hyperbolic PDE

∂2kx,y
∂s∂t

= 〈ẋs, ẏt〉kx,y

with initial conditions kx,y(u, ·) = kx,y(·, v) = 1 and where ẋs =
dxp
dp |p=s

and ẏt =
dxq
dq |q=t.
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The Equation continued

By the fundamental theorem of calculus we can differentiate

1+
∫ s

p=u

∫ t

q=v
kx,y(p,q)〈ẋp, ẏq〉dpdq

firstly with respect to s

∂kx,y(s, t)
∂s

=
∫ t

q=v
kx,y(s,q)〈ẋs, ẏq〉dq

and then with respect to t to obtain the desired linear hyperbolic PDE

∂2kx,y(s, t)
∂s∂t

= 〈ẋs, ẏt〉kx,y(s, t)
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Goursat

Theorem (Lees 1960 (Goursat 1916) Theorems 2 & 4)
Let σ : I → R and τ : J → R be two absolutely continuous functions
whose first derivatives are square integrable and such that σ(u) = τ(v).
Let C1,C2,C3 : D → R be a bounded and measurable over D and
C4 : D → R be square integrable. Then there exists a unique function
u : D → R such that u(s, v) = σ(s),u(u, t) = τ(t) and (almost
everywhere on D)

∂2u
∂s∂t

= C1(s, t)
∂u
∂s

+ C2(s, t)
∂u
∂t

+ C3(s, t)u+ C4(s, t)

If in addition Ci ∈ Cp−1(D) (i = 1,2,3,4) and σ and τ are Cp, then the
unique solution u : D → R of the Goursat problem is of class Cp.

Set C1 = C2 = C4 = 0 and C3(s, t) = 〈ẋs, ẏt〉 .If the two input paths x, y
are Cp then their derivatives will be of class Cp−1 and therefore the
solution kx,y will be of class Cp. Finite difference approximation works.
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The numerics

Example of error distribution of kx,y(s, t) on the whole grid (s, t) ∈ D.
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The end

Thank you!
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