Information Theory with Kernel Methods

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

July 2022

- \bullet Moments of feature map $\varphi: \mathfrak{X} \to \mathcal{H}$ Hilbert space
 - Probability distributions p on ${\mathcal X}$

- Mean element:
$$\mu_p = \int_{\mathcal{X}} \varphi(x) dp(x)$$

- Moments of feature map $\varphi: \mathfrak{X} \to \mathcal{H}$ Hilbert space
 - Probability distributions p on ${\mathcal X}$

- Mean element:
$$\mu_p = \int_{\mathfrak{X}} \varphi(x) dp(x)$$

- \bullet Full characterization if ${\mathcal H}$ large enough
 - See Sriperumbudur et al. (2010); Micchelli et al. (2006)
 - Natural metric: $(p,q) \mapsto \|\mu_p \mu_q\|$
 - Easy to estimate with convergence rates $\propto 1/\sqrt{n}$
 - Only the kernel $k(x,y) = \langle \varphi(x), \varphi(y) \rangle$ is needed

- Moments of feature map $\varphi: \mathfrak{X} \to \mathcal{H}$ Hilbert space
 - Probability distributions p on ${\mathcal X}$

- Mean element:
$$\mu_p = \int_{\mathfrak{X}} \varphi(x) dp(x)$$

- \bullet Full characterization if ${\mathcal H}$ large enough
 - See Sriperumbudur et al. (2010); Micchelli et al. (2006)
 - Natural metric: $(p,q) \mapsto \|\mu_p \mu_q\|$
 - Easy to estimate with convergence rates $\propto 1/\sqrt{n}$
 - Only the kernel $k(x,y) = \langle \varphi(x), \varphi(y) \rangle$ is needed
- Many applications (see, e.g. Muandet et al., 2017)
 - Model fitting, independence tests, GANs, etc.

- Moments of feature map $\varphi: \mathfrak{X} \to \mathcal{H}$ Hilbert space
 - Probability distributions p on ${\mathcal X}$

- Mean element:
$$\mu_p = \int_{\mathfrak{X}} \varphi(x) dp(x)$$

- \bullet Full characterization if ${\mathcal H}$ large enough
 - See Sriperumbudur et al. (2010); Micchelli et al. (2006)
 - Natural metric: $(p,q) \mapsto \|\mu_p \mu_q\|$
 - Easy to estimate with convergence rates $\propto 1/\sqrt{n}$
 - Only the kernel $k(x,y) = \langle \varphi(x), \varphi(y) \rangle$ is needed
- Many applications (see, e.g. Muandet et al., 2017)
 - Model fitting, independence tests, GANs, etc.
- Any link with information-theoretic quantities?

From mean element to covariance operator

- Covariance operator $\Sigma_p = \int_{\mathcal{X}} \varphi(x) \varphi(x)^* dp(x)$
 - From \mathcal{H} to \mathcal{H} , defined as $\langle f, \Sigma_p g \rangle = \int_{\Upsilon} \langle f, \varphi(x) \rangle \langle g, \varphi(x) \rangle dp(x)$
 - Self-adjoint, positive-semidefinite

From mean element to covariance operator

- Covariance operator $\Sigma_p = \int_{\mathcal{X}} \varphi(x) \varphi(x)^* dp(x)$
 - From \mathcal{H} to \mathcal{H} , defined as $\langle f, \Sigma_p g \rangle = \int_{\Upsilon} \langle f, \varphi(x) \rangle \langle g, \varphi(x) \rangle dp(x)$
 - Self-adjoint, positive-semidefinite
- Main tool: Quantum entropies
 - Von Neumann entropy: tr $\left[\Sigma_p \log \Sigma_p\right]$
 - Relative entropy: tr $\left[\Sigma_p(\log \Sigma_p \log \Sigma_q) \Sigma_p + \Sigma_q\right]$

From mean element to covariance operator

- Covariance operator $\Sigma_p = \int_{\mathcal{X}} \varphi(x) \varphi(x)^* dp(x)$
 - From \mathcal{H} to \mathcal{H} , defined as $\langle f, \Sigma_p g \rangle = \int_{\Upsilon} \langle f, \varphi(x) \rangle \langle g, \varphi(x) \rangle dp(x)$
 - Self-adjoint, positive-semidefinite
- Main tool: Quantum entropies
 - Von Neumann entropy: tr $\left[\Sigma_p \log \Sigma_p\right]$
 - Relative entropy: tr $\left[\Sigma_p(\log \Sigma_p \log \Sigma_q) \Sigma_p + \Sigma_q\right]$
- Many properties (https://arxiv.org/abs/2202.08545)
 - Clear relationships with regular information theory
 - Estimation in $1/\sqrt{n}$
 - Use in multivariate modelling
 - Variational inference

Covariance operators $\Sigma_p = \int_{\mathfrak{X}} \varphi(x) \varphi(x)^* dp(x)$

• Assumptions

- $(x,y)\mapsto k(x,y)$ positive definite kernel on $\mathfrak{X}\times\mathfrak{X}$
- \mathfrak{X} compact, and $\forall x \in \mathfrak{X}$, $k(x, x) \leqslant 1$

Covariance operators $\Sigma_p = \int_{\mathfrak{X}} \varphi(x) \varphi(x)^* dp(x)$

• Assumptions

- $(x,y)\mapsto k(x,y)$ positive definite kernel on $\mathfrak{X}\times\mathfrak{X}$
- ${\mathcal X}$ compact, and $\forall x \in {\mathcal X}, \; k(x,x) \leqslant 1$
- Defines a reproducing kernel Hilbert space (RKHS) of functions

$$\begin{split} \varphi(x) &= k(\cdot, x) \\ f(x) &= \langle f, \varphi(x) \rangle \text{ with norm } \|f\|^2 \\ k(x, y) &= \langle k(\cdot, x), k(\cdot, y) \rangle = \langle \varphi(x), \varphi(y) \rangle \end{split}$$

Covariance operators $\Sigma_p = \int_{\mathfrak{X}} \varphi(x) \varphi(x)^* dp(x)$

• Assumptions

- $(x,y)\mapsto k(x,y)$ positive definite kernel on $\mathfrak{X}\times\mathfrak{X}$
- ${\mathcal X}$ compact, and $\forall x \in {\mathcal X}, \; k(x,x) \leqslant 1$
- Defines a reproducing kernel Hilbert space (RKHS) of functions

$$\begin{array}{lll} \varphi(x) &=& k(\cdot, x) \\ f(x) &=& \langle f, \varphi(x) \rangle \text{ with norm } \|f\|^2 \\ k(x, y) &=& \langle k(\cdot, x), k(\cdot, y) \rangle = \langle \varphi(x), \varphi(y) \rangle \end{array}$$

- Universal kernel (Steinwart, 2001): RKHS dense in the set of continuous functions with uniform norm
- Classical example for $\mathfrak{X} \subset \mathbb{R}^d$: $k(x,y) = \exp(-\|x-y\|_2^2/\sigma^2)$
 - Infinitely differentiable functions

Covariance operators $\Sigma_p = \int_{\mathcal{X}} \varphi(x) \varphi(x)^* dp(x)$

- Characterization of probability distributions
 - Σ_p is positive semi-definite, with trace less than one
 - Sequence of positive eigenvalues tending to zero
 - The mapping $p \mapsto \Sigma_p$ is injective

Covariance operators $\Sigma_p = \int_{\mathcal{X}} \varphi(x) \varphi(x)^* dp(x)$

- Characterization of probability distributions
 - Σ_p is positive semi-definite, with trace less than one
 - Sequence of positive eigenvalues tending to zero
 - The mapping $p \mapsto \Sigma_p$ is injective
- Torus $\mathfrak{X} = [0, 1]^d$
 - k(x,y) = q(x-y), q 1-periodic, with positive Fourier series \hat{q}
 - Corresponds to $\varphi(x)_{\omega} = \hat{q}(\omega)^{1/2} e^{i\omega^{\top}x}$, $\omega \in \mathbb{Z}^d$
 - Example: $\hat{q}(\omega) \propto \exp(-\sigma \|\omega\|_1)$

Covariance operators $\Sigma_p = \int_{\mathcal{X}} \varphi(x) \varphi(x)^* dp(x)$

- Characterization of probability distributions
 - Σ_p is positive semi-definite, with trace less than one
 - Sequence of positive eigenvalues tending to zero
 - The mapping $p \mapsto \Sigma_p$ is injective
- Torus $\mathfrak{X}=[0,1]^d$
 - k(x,y) = q(x-y), q 1-periodic, with positive Fourier series \hat{q}
 - Corresponds to $\varphi(x)_{\omega} = \hat{q}(\omega)^{1/2} e^{i\omega^{\top}x}$, $\omega \in \mathbb{Z}^d$
 - Example: $\hat{q}(\omega) \propto \exp(-\sigma \|\omega\|_1)$

• Finite sets

- Orthonormal embeddings $\langle \varphi(x), \varphi(y) \rangle = 1_{x=y}$
- $\mathcal{X} = \{-1, 1\}^d$, with $\varphi(x)$ composed of monomials

Quantum entropies

- Negative entropy (von Neumann, 1932): tr $[A \log A] = \sum_{\lambda \in \Lambda(A)} \lambda \log \lambda$
 - $\Lambda(A)$ set of eigenvalues of A

Quantum entropies

- Negative entropy (von Neumann, 1932): tr $[A \log A] = \sum_{\lambda \in \Lambda(A)} \lambda \log \lambda$ - $\Lambda(A)$ set of eigenvalues of A
- Relative entropy: $D(A||B) = tr[A(\log A \log B) A + B]$
 - Kullback-Leibler divergence

Quantum entropies

- Negative entropy (von Neumann, 1932): tr [A log A] = ∑_{λ∈Λ(A)} λ log λ
 Λ(A) set of eigenvalues of A
- Relative entropy: $D(A||B) = tr[A(\log A \log B) A + B]$
 - Kullback-Leibler divergence
- **Properties** (Petz, 1986; Ruskai, 2007; Wilde, 2013)

$$- D(A||B) \ge 0 \text{ with equality if and only if } A = B - (A, B) \mapsto D(A||B) \text{ jointly convex in } A \text{ and } B - D\Big(\sum_{i=1}^{n} C_i A C_i^* \Big\| \sum_{i=1}^{n} C_i B C_i^* \Big) \le D(A||B) \text{ if } \sum_{i=1}^{n} C_i^* C_i = I \\ - \text{Applications to matrix concentration inequalities (Tropp, 2015)}$$

- **Definition**: $D(\Sigma_p || \Sigma_q) = \operatorname{tr} \left[\Sigma_p (\log \Sigma_p \log \Sigma_q) \Sigma_p + \Sigma_q \right]$
 - Σ_p and Σ_q covariance operators

- **Definition**: $D(\Sigma_p || \Sigma_q) = \operatorname{tr} \left[\Sigma_p (\log \Sigma_p \log \Sigma_q) \Sigma_p + \Sigma_q \right]$
 - Σ_p and Σ_q covariance operators
- Properties
 - Finite if $\left\|\frac{dp}{dq}\right\|_{\infty}$ finite
 - Always non-negative, with equality if and only p = q
 - Jointly convex in $\left(p,q\right)$

- **Definition**: $D(\Sigma_p || \Sigma_q) = \operatorname{tr} \left[\Sigma_p (\log \Sigma_p \log \Sigma_q) \Sigma_p + \Sigma_q \right]$
 - Σ_p and Σ_q covariance operators
- Properties
 - Finite if $\left\|\frac{dp}{dq}\right\|_{\infty}$ finite
 - Always non-negative, with equality if and only p = q
 - Jointly convex in $\left(p,q\right)$
- Extension to non-relative entropy
 - See Bach (2022a)

- **Definition**: $D(\Sigma_p || \Sigma_q) = \operatorname{tr} \left[\Sigma_p (\log \Sigma_p \log \Sigma_q) \Sigma_p + \Sigma_q \right]$
 - Σ_p and Σ_q covariance operators
- Properties
 - Finite if $\left\|\frac{dp}{dq}\right\|_{\infty}$ finite
 - Always non-negative, with equality if and only p = q
 - Jointly convex in $\left(p,q\right)$
- Extension to non-relative entropy
 - See Bach (2022a)
- Not all properties of Shannon relative entropy will be satisfied
 - For axiomatic definition of entropy, see Csiszár (2008)

Finite sets with orthonormal embeddings

- Finite set \mathcal{X}
 - Orthonormal embeddings $\langle \varphi(x), \varphi(y) \rangle = 1_{x=y}$
 - All covariance operators jointly diagonalizable with probability mass values as eigenvalues

Finite sets with orthonormal embeddings

- Finite set \mathfrak{X}
 - Orthonormal embeddings $\langle \varphi(x), \varphi(y) \rangle = 1_{x=y}$
 - All covariance operators jointly diagonalizable with probability mass values as eigenvalues
- Recovering regular entropies exactly

$$D(\Sigma_p \| \Sigma_q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = D(p \| q).$$

- Beyond finite sets?

Lower bound on Shannon relative entropy

• Using Jensen's inequality and $\forall x \in \mathcal{X}$, $\|\varphi(x)\|^2 \leq 1$

$$\begin{aligned} D(\Sigma_p \| \Sigma_q) &= D\left(\int_{\mathcal{X}} \varphi(x)\varphi(x)^* dp(x) \right\| \int_{\mathcal{X}} \frac{dq}{dp}(x)\varphi(x)\varphi(x)^* dp(x) \right) \\ &\leqslant \int_{\mathcal{X}} D\left(\varphi(x)\varphi(x)^* \right\| \frac{dq}{dp}(x)\varphi(x)\varphi(x)^* \right) dp(x) \\ &= \int_{\mathcal{X}} \|\varphi(x)\|^2 D\left(1 \left\| \frac{dq}{dp}(x) \right) dp(x) \\ &\leqslant \int_{\mathcal{X}} \log\left(\frac{dp}{dq}(x)\right) dp(x) = D(p \| q) \end{aligned}$$

Lower bound on Shannon relative entropy

• Using Jensen's inequality and $\forall x \in \mathcal{X}$, $\|\varphi(x)\|^2 \leq 1$

$$\begin{aligned} D(\Sigma_p \| \Sigma_q) &= D\left(\int_{\mathcal{X}} \varphi(x)\varphi(x)^* dp(x) \right\| \int_{\mathcal{X}} \frac{dq}{dp}(x)\varphi(x)\varphi(x)^* dp(x) \right) \\ &\leqslant \int_{\mathcal{X}} D\left(\varphi(x)\varphi(x)^* \right\| \frac{dq}{dp}(x)\varphi(x)\varphi(x)^* \right) dp(x) \\ &= \int_{\mathcal{X}} \|\varphi(x)\|^2 D\left(1 \left\| \frac{dq}{dp}(x) \right) dp(x) \\ &\leqslant \int_{\mathcal{X}} \log\left(\frac{dp}{dq}(x)\right) dp(x) = D(p \| q) \end{aligned}$$

- How tight?
 - Define Σ the covariance operator for the uniform distribution τ

Lower-bound on kernel relative entropies

• Quantum measurement

- Define for all $y \in \mathcal{X}$, operator $D(y) = \Sigma^{-1/2} (\varphi(y)\varphi(y)^*) \Sigma^{-1/2}$ - Positive self-adjoint operators such that $\int_{\mathcal{X}} D(y) d\tau(y) = I$

Lower-bound on kernel relative entropies

• Quantum measurement

- Define for all $y \in \mathfrak{X}$, operator $D(y) = \Sigma^{-1/2} (\varphi(y)\varphi(y)^*) \Sigma^{-1/2}$ Positive self-adjoint operators such that $\int_{\mathfrak{X}} D(y) d\tau(y) = I$

- Measurement $tr[D(y)\Sigma_p] = \tilde{p}(y)$, with

$$\tilde{p}(y) = \int_{\mathcal{X}} \langle \varphi(x), \Sigma^{-1/2} \varphi(y) \rangle^2 dp(x) = \int_{\mathcal{X}} h(x, y) dp(x)$$

where
$$h(x,y) = \langle \varphi(x), \Sigma^{-1/2} \varphi(y) \rangle^2$$
, and $\int_{\mathfrak{X}} h(x,y) d\tau(x) = 1$

Lower-bound on kernel relative entropies

• Quantum measurement

- Define for all $y \in \mathfrak{X}$, operator $D(y) = \Sigma^{-1/2} (\varphi(y)\varphi(y)^*) \Sigma^{-1/2}$ Positive self-adjoint operators such that $\int_{\mathcal{Y}} D(y) d\tau(y) = I$

- Measurement $tr[D(y)\Sigma_p] = \tilde{p}(y)$, with

$$\tilde{p}(y) = \int_{\mathcal{X}} \langle \varphi(x), \Sigma^{-1/2} \varphi(y) \rangle^2 dp(x) = \int_{\mathcal{X}} h(x, y) dp(x)$$

where
$$h(x,y) = \langle \varphi(x), \Sigma^{-1/2} \varphi(y) \rangle^2$$
, and $\int_{\mathfrak{X}} h(x,y) d\tau(x) = 1$

- Monotonicity of quantum measurements: $D(\tilde{p} \| \tilde{q}) \leq D(\Sigma_p \| \Sigma_q)$
- "Sandwich": $D(\tilde{p} \| \tilde{q}) \leq D(\Sigma_p \| \Sigma_q) \leq D(p \| q)$

Small-width asymptotics for continuous distributions

• Approximation bound: assuming that p,q have strictly positive Lipschitz-continuous densities

$$0 \leqslant D(p||q) - D(\tilde{p}||\tilde{q}) \leqslant E(p,q) \times \sup_{x \in \mathcal{X}} \int_{\mathcal{X}} h(x,y) d(x,y)^2 dy$$

- leading to the same bound for $D(p\|q) D(\Sigma_p\|\Sigma_q)$
- Explicit constant E(p,q), see Bach (2022a)

Small-width asymptotics for continuous distributions

• Approximation bound: assuming that p,q have strictly positive Lipschitz-continuous densities

$$0 \leqslant D(p||q) - D(\tilde{p}||\tilde{q}) \leqslant E(p,q) \times \sup_{x \in \mathcal{X}} \int_{\mathcal{X}} h(x,y) d(x,y)^2 dy$$

- leading to the same bound for $D(p\|q) D(\Sigma_p\|\Sigma_q)$
- Explicit constant E(p,q), see Bach (2022a)
- Consequences on the torus

- With $\hat{q}(\omega) \propto \exp(-\sigma \|\omega\|_1)$, we have $D(p\|q) - D(\Sigma_p \|\Sigma_q) = O(\sigma^2)$

Estimation from finite sample - I

- Canonical problem: estimate $D(\Sigma_p \| \Sigma)$ from n i.i.d. samples of p
 - With $D(\Sigma_p \| \Sigma) = \operatorname{tr} \left[\sum_p \log \Sigma_p \Sigma_p \log \Sigma \Sigma_p + \Sigma \right]$

Estimation from finite sample - I

- Canonical problem: estimate $D(\Sigma_p \| \Sigma)$ from n i.i.d. samples of p
 - With $D(\Sigma_p \| \Sigma) = \operatorname{tr} \left[\sum_p \log \Sigma_p \Sigma_p \log \Sigma \Sigma_p + \Sigma \right]$
 - Natural estimator of $\operatorname{tr}\left[\Sigma_p \log \Sigma_p\right]$ is $\operatorname{tr}\left[\hat{\Sigma}_p \log \hat{\Sigma}_p\right]$, with

$$\hat{\Sigma}_p = \frac{1}{n} \sum_{i=1}^n \varphi(x_i) \varphi(x_i)^*$$

Estimation from finite sample - I

- Canonical problem: estimate $D(\Sigma_p \| \Sigma)$ from n i.i.d. samples of p
 - With $D(\Sigma_p \| \Sigma) = \operatorname{tr} \left[\sum_p \log \Sigma_p \Sigma_p \log \Sigma \Sigma_p + \Sigma \right]$
 - Natural estimator of $\operatorname{tr}\left[\Sigma_p \log \Sigma_p\right]$ is $\operatorname{tr}\left[\hat{\Sigma}_p \log \hat{\Sigma}_p\right]$, with

$$\hat{\Sigma}_p = \frac{1}{n} \sum_{i=1}^n \varphi(x_i) \varphi(x_i)^*$$

• **Proposition**: tr $\left[\hat{\Sigma}_p \log \hat{\Sigma}_p\right]$ = tr $\left[\frac{1}{n}K \log\left(\frac{1}{n}K\right)\right]$

- with $K \in \mathbb{R}^{n \times n}$ the kernel matrix defined as $K_{ij} = k(x_i, x_j)$

– Running time complexity: from $O(n^3)$ to $O(nm^2)$ (Boutsidis et al., 2009; Rudi et al., 2015)

Estimation from finite sample - II

• Statistical performance

- Let
$$c = \int_{0}^{+\infty} \sup_{x \in \mathcal{X}} \langle \varphi(x), (\Sigma + \lambda I)^{-1} \varphi(x) \rangle^{2} d\lambda$$

- Assume $\frac{dp}{d\tau}(x) \ge \alpha$

$$\mathbb{E}\Big[\big|\operatorname{tr}\left[\hat{\Sigma}_p\log\hat{\Sigma}_p\right] - \operatorname{tr}\left[\Sigma_p\log\Sigma_p\right]\big|\Big] \leqslant \frac{1 + c(8\log n)^2}{n\alpha} + \frac{17}{\sqrt{n}} \left(2\sqrt{c} + \log n\right)$$

- No need to regularize

Estimation from finite sample - II

• Statistical performance

- Let
$$c = \int_{0}^{+\infty} \sup_{x \in \mathcal{X}} \langle \varphi(x), (\Sigma + \lambda I)^{-1} \varphi(x) \rangle^{2} d\lambda$$

- Assume $\frac{dp}{d\tau}(x) \ge \alpha$

$$\mathbb{E}\Big[\big|\operatorname{tr}\left[\hat{\Sigma}_p\log\hat{\Sigma}_p\right] - \operatorname{tr}\left[\Sigma_p\log\Sigma_p\right]\big|\Big] \leqslant \frac{1 + c(8\log n)^2}{n\alpha} + \frac{17}{\sqrt{n}} \left(2\sqrt{c} + \log n\right)$$

- No need to regularize
- Torus: $c \propto \sigma^{-d} \Rightarrow$ estimation rate proportional to $\sigma^{-d/2}/\sqrt{n}$
 - Entropy estimation in $n^{-2/(d+4)}$
 - NB: optimal rate equal to $n^{-4/(d+4)}$ (Han et al., 2020)

Estimation from finite sample - III

- Negative entropy estimation
 - From i.i.d. samples with 20 replications
 - Two values of the kernel bandwidth $\sigma,$ as n increases

• NB: Faster estimation from oracles $\int_{\mathcal{X}} k(x, y) k(x, z) dp(x)$
Multivariate probabilistic modelling

- Product set $\mathfrak{X} = \mathfrak{X}_1 \times \mathfrak{X}_2$
 - Feature space $\mathcal{H}_1\otimes\mathcal{H}_2$, feature map $\varphi_1\otimes\varphi_2$
 - Covariance operators $\Sigma_{p_{X_1X_2}}$ on $\mathcal{H}_1\otimes\mathcal{H}_2$
 - Covariance operators $\Sigma_{p_{X_1}}$ on \mathcal{H}_1 , and $\Sigma_{p_{X_2}}$ on \mathcal{H}_2

Multivariate probabilistic modelling

- Product set $\mathfrak{X} = \mathfrak{X}_1 \times \mathfrak{X}_2$
 - Feature space $\mathcal{H}_1\otimes\mathcal{H}_2$, feature map $\varphi_1\otimes\varphi_2$
 - Covariance operators $\Sigma_{p_{X_1X_2}}$ on $\mathcal{H}_1\otimes\mathcal{H}_2$
 - Covariance operators $\Sigma_{p_{X_1}}$ on \mathcal{H}_1 , and $\Sigma_{p_{X_2}}$ on \mathcal{H}_2

• Kernel mutual information

- Definition: $D(\Sigma_{p_{X_1X_2}} \| \Sigma_{p_{X_1}} \otimes \Sigma_{p_{X_2}})$
- Non-negative, equal to zero if and only if X_1 and X_2 are independent

Multivariate probabilistic modelling

- Product set $\mathfrak{X} = \mathfrak{X}_1 \times \mathfrak{X}_2$
 - Feature space $\mathcal{H}_1\otimes\mathcal{H}_2$, feature map $arphi_1\otimesarphi_2$
 - Covariance operators $\Sigma_{p_{X_1X_2}}$ on $\mathcal{H}_1\otimes\mathcal{H}_2$
 - Covariance operators $\Sigma_{p_{X_1}}$ on \mathcal{H}_1 , and $\Sigma_{p_{X_2}}$ on \mathcal{H}_2

• Kernel mutual information

- Definition: $D(\Sigma_{p_{X_1X_2}} \| \Sigma_{p_{X_1}} \otimes \Sigma_{p_{X_2}})$
- Non-negative, equal to zero if and only if X_1 and X_2 are independent

• Conditional independence

- Not as straightforward
- Data processing inequality $D(\Sigma_{p_{X_1X_2}} \| \Sigma_{q_{X_1X_2}}) \ge D(\Sigma_{p_{X_1}} \| \Sigma_{q_{X_1}})$

Log-partition functions and variational inference

• Log-partition function: given $f: \mathcal{X} \to \mathbb{R}$ and a distribution q on \mathcal{X}

$$\log \int_{\mathcal{X}} e^{f(x)} dq(x) = \sup_{p \text{ probability}} \int_{\mathcal{X}} f(x) dp(x) - D(p \| q)$$

- Used within variational inference (Wainwright and Jordan, 2008)

Log-partition functions and variational inference

• Log-partition function: given $f: \mathcal{X} \to \mathbb{R}$ and a distribution q on \mathcal{X}

$$\log \int_{\mathcal{X}} e^{f(x)} dq(x) = \sup_{p \text{ probability}} \int_{\mathcal{X}} f(x) dp(x) - D(p \| q)$$

- Used within variational inference (Wainwright and Jordan, 2008)
- **Upper-bound** (assuming unit norm features)

$$b(f) = \sup_{p \text{ measure }} \int_{\mathcal{X}} f(x) dp(x) - D(\Sigma_p \| \Sigma_q)$$

- If
$$f(x) = \langle \varphi(x), H\varphi(x) \rangle$$
, $b(f) = \sup_{p \text{ measure}} \operatorname{tr}[H\Sigma_p] - D(\Sigma_p \| \Sigma_q)$

- Computable by semi-definite programming

Log-partition functions and variational inference

• Simple example

$$- \mathcal{X} = [0, 1], \ f(x) = \cos(2\pi x), \text{ with } \log(\int_0^1 e^{f(x)} dx) \approx 0.2359$$
$$- \hat{\varphi}(x)_\omega = \hat{q}(\omega)e^{2i\pi\omega x}, \text{ for } \omega \in \{-r, \dots, r\}$$

Relationship with optimization

- Adding a temperature: $b_{\varepsilon}(f) = \sup_{p \text{ measure}} \int_{\mathcal{X}} f(x) dp(x) \varepsilon D(\Sigma_p || \Sigma_q)$
- Convex duality

$$b_{\varepsilon}(f) = \inf_{M} \varepsilon \log \operatorname{tr} \exp\left(\frac{1}{\varepsilon}M + \log \Sigma_{q}\right)$$

such that $\forall x \in \mathfrak{X}, \ f(x) = \langle \varphi(x), M\varphi(x) \rangle$

Relationship with optimization

- Adding a temperature: $b_{\varepsilon}(f) = \sup_{p \text{ measure}} \int_{\chi} f(x) dp(x) \varepsilon D(\Sigma_p || \Sigma_q)$
- Convex duality

$$b_{\varepsilon}(f) = \inf_{M} \varepsilon \log \operatorname{tr} \exp\left(\frac{1}{\varepsilon}M + \log \Sigma_{q}\right)$$

such that $\forall x \in \mathfrak{X}, \ f(x) = \langle \varphi(x), M\varphi(x) \rangle$

• Zero temperature limit: When ε tends to zero, $b_{\varepsilon}(f)$ converges to

 $\inf_{M} \lambda_{\max}(M) \text{ such that } \forall x \in \mathfrak{X}, \ f(x) = \langle \varphi(x), M\varphi(x) \rangle$ $\Leftrightarrow \inf_{c \in \mathbb{R}, \ A \succcurlyeq 0} c \quad \text{such that } \forall x \in \mathfrak{X}, \ f(x) = c - \langle \varphi(x), A\varphi(x) \rangle$

Optimization formulation of Rudi, Marteau-Ferey, and Bach (2020)
Based on "kernel sums-of-squares"

• **Property**: $D(\Sigma_p || \Sigma_q)$ is concave in the kernel

• **Property**: $D(\Sigma_p || \Sigma_q)$ is concave in the kernel

• Maximizing lower-bound on entropy

- Constraint: $\Lambda \succcurlyeq 0$ such that $\forall x \in \mathfrak{X}, \langle \varphi(x), \Lambda \varphi(x) \rangle \leqslant 1$
- Maximize $D(\Lambda^{1/2}\Sigma_p\Lambda^{1/2}\|\Lambda^{1/2}\Sigma_q\Lambda^{1/2})$

• **Property**: $D(\Sigma_p || \Sigma_q)$ is concave in the kernel

• Maximizing lower-bound on entropy

- Constraint: $\Lambda \succcurlyeq 0$ such that $\forall x \in \mathfrak{X}, \langle \varphi(x), \Lambda \varphi(x) \rangle \leqslant 1$
- Maximize $D(\Lambda^{1/2}\Sigma_p\Lambda^{1/2}\|\Lambda^{1/2}\Sigma_q\Lambda^{1/2})$

• Illustration for $\mathfrak{X} = [0, 1]$

- Illustration for $\mathfrak{X} = \{-1,1\}^d$
 - $\mathfrak{X} = \{-1, 1\}^d$, and $\varphi(x) = \operatorname{Diag}(\eta)^{1/2} \begin{pmatrix} x \\ 1 \end{pmatrix} \in \mathbb{R}^{d+1}$
 - Maximize over η in the simplex in \mathbb{R}^{d+1}
 - Comparison with log-determinant bound of Jordan and Wainwright (2003)

Extensions

• *f*-divergences:
$$D(p||q) = \int_{\mathcal{X}} f\left(\frac{dp}{dq}(x)\right) dq(x)$$

- Need f operator convex (KL, squared Hellinger, Pearson, χ^2)
- All properties are preserved

Extensions

• *f*-divergences:
$$D(p||q) = \int_{\mathcal{X}} f\left(\frac{dp}{dq}(x)\right) dq(x)$$

- Need f operator convex (KL, squared Hellinger, Pearson, χ^2)
- All properties are preserved
- Other notions of quantum divergences (Matsumoto, 2015)

$$\operatorname{tr}\left[A\log(B^{-1/2}AB^{-1/2})\right] \ge \operatorname{tr}\left[A(\log A - \log B)\right]$$

Extensions

• *f*-divergences:
$$D(p||q) = \int_{\mathcal{X}} f\left(\frac{dp}{dq}(x)\right) dq(x)$$

- Need f operator convex (KL, squared Hellinger, Pearson, χ^2)
- All properties are preserved
- Other notions of quantum divergences (Matsumoto, 2015)

$$\operatorname{tr}\left[A\log(B^{-1/2}AB^{-1/2})\right] \ge \operatorname{tr}\left[A(\log A - \log B)\right]$$

• Optimal lower-bound

 $\inf_{p,q \text{ probability measures}} D(p \| q) \text{ such that } \Sigma_p = A \text{ and } \Sigma_q = B$

- Tractable sum-of-squares relaxations
- See https://arxiv.org/abs/2206.13285 for details

Conclusion

• Information theory with kernel methods

- Quantum entropies applied to covariance operators
- Precise relationships with Shannon entropies
- Applications to variational inference

Conclusion

• Information theory with kernel methods

- Quantum entropies applied to covariance operators
- Precise relationships with Shannon entropies
- Applications to variational inference

• Extensions

- Large-scale algorithms (Bach, 2022b)
- Structured objects beyond finite sets and \mathbb{R}^d

Conclusion

• Information theory with kernel methods

- Quantum entropies applied to covariance operators
- Precise relationships with Shannon entropies
- Applications to variational inference

• Extensions

- Large-scale algorithms (Bach, 2022b)
- Structured objects beyond finite sets and \mathbb{R}^d

• References

- https://arxiv.org/abs/2202.08545
- https://arxiv.org/abs/2206.13285
- https://francisbach.com/information-theory-with-kernel-methods/

References

Francis Bach. Information theory with kernel methods. Technical Report 2202.08545, arXiv, 2022a.

- Francis Bach. Sum-of-squares relaxations for information theory and variational inference. Technical Report 2206.13285, arXiv, 2022b.
- Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. An improved approximation algorithm for the column subset selection problem. In *Proceedings of the Symposium on Discrete algorithms*, pages 968–977, 2009.
- Imre Csiszár. Axiomatic characterizations of information measures. *Entropy*, 10(3):261–273, 2008.
- Yanjun Han, Jiantao Jiao, Tsachy Weissman, and Yihong Wu. Optimal rates of entropy estimation over Lipschitz balls. *The Annals of Statistics*, 48(6):3228–3250, 2020.
- Michael I. Jordan and Martin J. Wainwright. Semidefinite relaxations for approximate inference on graphs with cycles. *Advances in Neural Information Processing Systems*, 16, 2003.
- Keiji Matsumoto. A new quantum version of *f*-divergence. In Nagoya Winter Workshop: Reality and Measurement in Algebraic Quantum Theory, pages 229–273. Springer, 2015.
- Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. *Journal of Machine Learning Research*, 7(12), 2006.
- Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. Kernel mean embedding of distributions: A review and beyond. *Foundations and Trend in Machine Learning*, 10 (1-2):1–141, 2017.

- Dénes Petz. Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. *Communications in Mathematical Physics*, 105(1):123–131, 1986.
- Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström computational regularization. *Advances in Neural Information Processing Systems*, 28, 2015.
- Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding global minima via kernel approximations. Technical Report 2012.11978, arXiv, 2020.
- Mary Beth Ruskai. Another short and elementary proof of strong subadditivity of quantum entropy. *Reports on Mathematical Physics*, 60(1):1–12, 2007.
- Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert R. G. Lanckriet. Hilbert space embeddings and metrics on probability measures. *Journal of Machine Learning Research*, 11:1517–1561, 2010.
- Ingo Steinwart. On the influence of the kernel on the consistency of support vector machines. *Journal* of Machine Learning Research, 2(Nov):67–93, 2001.
- Joel A. Tropp. An introduction to matrix concentration inequalities. *Foundations and Trends in Machine Learning*, 8(1-2):1–230, 2015.
- John von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer Berlin, 1932.
- Martin J. Wainwright and Michael I. Jordan. *Graphical Models, Exponential Families, and Variational Inference*. Now Publishers Inc., 2008.
- Mark M. Wilde. Quantum Information Theory. Cambridge University Press, 2013.