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Studying probability distributions through moments

• Moments of feature map ϕ : X → H Hilbert space

– Probability distributions p on X

– Mean element: µp =

∫

X

ϕ(x)dp(x)

- Full characterization if H large enough

- See Sriperumbudur et al. (2010); Micchelli et al. (2006)

- Natural metric: (p, q) 7→ ‖µp − µq‖
- Easy to estimate with convergence rates ∝ 1/

√
n

- Only the kernel k(x, y) = 〈ϕ(x), ϕ(y)〉 is needed

- Many applications (Muandet et al., 2017)

- Model fitting, independence tests, GANs, etc.

- Any link with information-theoretic quantities?
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From mean element to covariance operator

• Covariance operator Σp =

∫

X

ϕ(x)ϕ(x)∗dp(x)

– From H to H, defined as 〈f,Σpg〉 =
∫

X

〈f, ϕ(x)〉〈g, ϕ(x)〉dp(x)
– Self-adjoint, positive-semidefinite
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• Covariance operator Σp =

∫

X

ϕ(x)ϕ(x)∗dp(x)

– From H to H, defined as 〈f,Σpg〉 =
∫

X

〈f, ϕ(x)〉〈g, ϕ(x)〉dp(x)
– Self-adjoint, positive-semidefinite

• Main tool: Quantum entropies

– Von Neumann entropy: tr
[

Σp log Σp

]

– Relative entropy: tr
[

Σp(log Σp − log Σq)− Σp + Σq

]

• Many properties (https://arxiv.org/abs/2202.08545)

– Clear relationships with regular information theory

– Estimation in 1/
√
n

– Use in multivariate modelling

– Variational inference



Covariance operators Σp =

∫

X

ϕ(x)ϕ(x)∗dp(x)

• Assumptions

– (x, y) 7→ k(x, y) positive definite kernel on X× X

– X compact, and ∀x ∈ X, k(x, x) 6 1
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– Defines a reproducing kernel Hilbert space (RKHS) of functions
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f(x) = 〈f, ϕ(x)〉 with norm ‖f‖2

k(x, y) = 〈k(·, x), k(·, y)〉 = 〈ϕ(x), ϕ(y)〉

– Universal kernel (Steinwart, 2001): RKHS dense in the set of

continuous functions with uniform norm

• Classical example for X ⊂ R
d: k(x, y) = exp(−‖x− y‖22/σ2)

– Infinitely differentiable functions



Covariance operators Σp =

∫

X

ϕ(x)ϕ(x)∗dp(x)

• Characterization of probability distributions

– Σp is positive semi-definite, with trace less than one

– Sequence of positive eigenvalues tending to zero

– The mapping p 7→ Σp is injective



Covariance operators Σp =

∫

X

ϕ(x)ϕ(x)∗dp(x)

• Characterization of probability distributions

– Σp is positive semi-definite, with trace less than one

– Sequence of positive eigenvalues tending to zero

– The mapping p 7→ Σp is injective

• Torus X = [0, 1]d

– k(x, y) = q(x− y), q 1-periodic, with positive Fourier series q̂

– Corresponds to ϕ(x)ω = q̂(ω)1/2eiω
⊤x, ω ∈ Z

d

– Example: q̂(ω) ∝ exp(−σ‖ω‖1)



Covariance operators Σp =

∫

X

ϕ(x)ϕ(x)∗dp(x)

• Characterization of probability distributions

– Σp is positive semi-definite, with trace less than one

– Sequence of positive eigenvalues tending to zero

– The mapping p 7→ Σp is injective

• Torus X = [0, 1]d

– k(x, y) = q(x− y), q 1-periodic, with positive Fourier series q̂

– Corresponds to ϕ(x)ω = q̂(ω)1/2eiω
⊤x, ω ∈ Z

d

– Example: q̂(ω) ∝ exp(−σ‖ω‖1)

• Finite sets

– Orthonormal embeddings 〈ϕ(x), ϕ(y)〉 = 1x=y

– X = {−1, 1}d, with ϕ(x) composed of monomials



Quantum entropies

• Negative entropy (von Neumann, 1932): tr
[

A logA
]

=
∑

λ∈Λ(A)

λ log λ

– Λ(A) set of eigenvalues of A



Quantum entropies

• Negative entropy (von Neumann, 1932): tr
[

A logA
]

=
∑

λ∈Λ(A)

λ log λ

– Λ(A) set of eigenvalues of A

• Relative entropy: D(A‖B) = tr[A(logA− logB)−A+B]

– Kullback-Leibler divergence



Quantum entropies

• Negative entropy (von Neumann, 1932): tr
[

A logA
]

=
∑

λ∈Λ(A)

λ log λ

– Λ(A) set of eigenvalues of A

• Relative entropy: D(A‖B) = tr[A(logA− logB)−A+B]

– Kullback-Leibler divergence

• Properties (Petz, 1986; Ruskai, 2007; Wilde, 2013)

– D(A‖B) > 0 with equality if and only if A = B

– (A,B) 7→ D(A‖B) jointly convex in A and B

– D
(

n
∑

i=1

CiAC∗
i

∥

∥

∥

n
∑

i=1

CiBC∗
i

)

6 D(A‖B) if
n
∑

i=1

C∗
i Ci = I

– Applications to matrix concentration inequalities (Tropp, 2015)
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Kernel relative entropy (Bach, 2022a)

• Definition: D(Σp‖Σq) = tr
[

Σp(log Σp − log Σq)− Σp +Σq

]

– Σp and Σq covariance operators

• Properties

– Finite if
∥

∥

dp
dq

∥

∥

∞
finite

– Always non-negative, with equality if and only p = q

– Jointly convex in (p, q)

• Extension to non-relative entropy

– See Bach (2022a)

• Not all properties of Shannon relative entropy will be satisfied

– For axiomatic definition of entropy, see Csiszár (2008)



Finite sets with orthonormal embeddings

• Finite set X

– Orthonormal embeddings 〈ϕ(x), ϕ(y)〉 = 1x=y

– All covariance operators jointly diagonalizable with probability mass

values as eigenvalues



Finite sets with orthonormal embeddings

• Finite set X

– Orthonormal embeddings 〈ϕ(x), ϕ(y)〉 = 1x=y

– All covariance operators jointly diagonalizable with probability mass

values as eigenvalues

• Recovering regular entropies exactly

D(Σp‖Σq) =
∑

x∈X

p(x) log
p(x)

q(x)
= D(p‖q).

– Beyond finite sets?



Lower bound on Shannon relative entropy

• Using Jensen’s inequality and ∀x ∈ X, ‖ϕ(x)‖2 6 1

D(Σp‖Σq) = D
(

∫

X

ϕ(x)ϕ(x)∗dp(x)
∥

∥

∥

∫

X

dq

dp
(x)ϕ(x)ϕ(x)∗dp(x)

)

6

∫

X

D
(

ϕ(x)ϕ(x)∗
∥

∥

∥

dq

dp
(x)ϕ(x)ϕ(x)∗

)

dp(x)

=

∫

X

‖ϕ(x)‖2D
(

1
∥

∥

∥

dq

dp
(x)

)

dp(x)

6

∫

X

log
(dp

dq
(x)

)

dp(x) = D(p‖q)



Lower bound on Shannon relative entropy

• Using Jensen’s inequality and ∀x ∈ X, ‖ϕ(x)‖2 6 1

D(Σp‖Σq) = D
(

∫

X

ϕ(x)ϕ(x)∗dp(x)
∥

∥

∥

∫

X

dq

dp
(x)ϕ(x)ϕ(x)∗dp(x)

)

6

∫

X

D
(

ϕ(x)ϕ(x)∗
∥

∥

∥

dq

dp
(x)ϕ(x)ϕ(x)∗

)

dp(x)

=

∫

X

‖ϕ(x)‖2D
(

1
∥

∥

∥

dq

dp
(x)

)

dp(x)

6

∫

X

log
(dp

dq
(x)

)

dp(x) = D(p‖q)

• How tight?

– Define Σ the covariance operator for the uniform distribution τ



Lower-bound on kernel relative entropies

• Quantum measurement

– Define for all y ∈ X, operator D(y) = Σ−1/2
(

ϕ(y)ϕ(y)∗
)

Σ−1/2

– Positive self-adjoint operators such that

∫

X

D(y)dτ(y) = I
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• Quantum measurement

– Define for all y ∈ X, operator D(y) = Σ−1/2
(

ϕ(y)ϕ(y)∗
)

Σ−1/2

– Positive self-adjoint operators such that

∫

X
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– Measurement tr[D(y)Σp] = p̃(y), with

p̃(y) =

∫

X

〈ϕ(x),Σ−1/2ϕ(y)〉2dp(x) =
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where h(x, y) = 〈ϕ(x),Σ−1/2ϕ(y)〉2, and
∫

X

h(x, y)dτ(x) = 1

• Monotonicity of quantum measurements: D(p̃‖q̃) 6 D(Σp‖Σq)

• “Sandwich”: D(p̃‖q̃) 6 D(Σp‖Σq) 6 D(p‖q)



Small-width asymptotics for continuous distributions

• Approximation bound: assuming that p, q have strictly positive

Lipschitz-continuous densities

0 6 D(p‖q)−D(p̃‖q̃) 6 E(p, q) × sup
x∈X

∫

X

h(x, y)d(x, y)2dy

– leading to the same bound for D(p‖q)−D(Σp‖Σq)

– Explicit constant E(p, q), see Bach (2022a)
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Lipschitz-continuous densities

0 6 D(p‖q)−D(p̃‖q̃) 6 E(p, q) × sup
x∈X

∫

X

h(x, y)d(x, y)2dy

– leading to the same bound for D(p‖q)−D(Σp‖Σq)

– Explicit constant E(p, q), see Bach (2022a)

• Consequences on the torus

– With q̂(ω) ∝ exp(−σ‖ω‖1), we haveD(p‖q)−D(Σp‖Σq) = O(σ2)
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• Canonical problem: estimate D(Σp‖Σ) from n i.i.d. samples of p
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Σp log Σp − Σp log Σ− Σp + Σ
]
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Estimation from finite sample - III

• Canonical problem: estimate D(Σp‖Σ) from n i.i.d. samples of p

– With D(Σp‖Σ) = tr
[

Σp log Σp − Σp log Σ− Σp + Σ
]

– Natural estimator of tr
[

Σp log Σp

]

is tr
[

Σ̂p log Σ̂p

]

, with

Σ̂p =
1

n

n
∑

i=1

ϕ(xi)ϕ(xi)
∗

• Proposition: tr
[

Σ̂p log Σ̂p

]

= tr
[

1
nK log

(

1
nK

)

]

– with K ∈ R
n×n the kernel matrix defined as Kij = k(xi, xj)

– Running time complexity: from O(n3) to O(nm2) (Boutsidis et al.,

2009; Rudi et al., 2015)



Estimation from finite sample - III

• Statistical performance

– Let c =

∫ +∞

0

sup
x∈X

〈ϕ(x), (Σ + λI)−1ϕ(x)〉2dλ

– Assume
dp

dτ
(x) > α

E

[

∣

∣ tr
[

Σ̂p log Σ̂p

]

−tr
[

Σp log Σp

]∣

∣

]

6
1 + c(8 log n)2

nα
+

17√
n

(

2
√
c+log n

)

– No need to regularize



Estimation from finite sample - III

• Statistical performance

– Let c =

∫ +∞

0

sup
x∈X

〈ϕ(x), (Σ + λI)−1ϕ(x)〉2dλ

– Assume
dp

dτ
(x) > α

E

[

∣

∣ tr
[

Σ̂p log Σ̂p

]

−tr
[

Σp log Σp

]∣

∣

]

6
1 + c(8 log n)2

nα
+

17√
n

(

2
√
c+log n

)

– No need to regularize

• Torus: c ∝ σ−d ⇒ estimation rate proportional to σ−d/2/
√
n

– Entropy estimation in n−2/(d+4)

– NB: optimal rate equal to n−4/(d+4) (Han et al., 2020)



Estimation from finite sample - III

• Negative entropy estimation

– From i.i.d. samples with 20 replications

– Two values of the kernel bandwidth σ, as n increases

1 2 3 4

log
10

(n)
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e
n
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o

p
y
 e

s
ti
m

a
te

s
=1

=1/4
Shannon entropy

• NB: Faster estimation from oracles

∫

X

k(x, y)k(x, z)dp(x)
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– Feature space H1 ⊗H2, feature map ϕ1 ⊗ ϕ2

– Covariance operators ΣpX1X2
on H1 ⊗H2

– Covariance operators ΣpX1
on H1, and ΣpX2

on H2
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Multivariate probabilistic modelling

• Product set X = X1 × X2

– Feature space H1 ⊗H2, feature map ϕ1 ⊗ ϕ2

– Covariance operators ΣpX1X2
on H1 ⊗H2

– Covariance operators ΣpX1
on H1, and ΣpX2

on H2

• Kernel mutual information

– Definition: D(ΣpX1X2
‖ΣpX1

⊗ ΣpX2
)

– Non-negative, equal to zero if and only if X1 and X2 are

independent

• Conditional independence

– Not as straightforward

– Data processing inequality D(ΣpX1X2
‖ΣqX1X2

) > D(ΣpX1
‖ΣqX1

)



Log-partition functions and variational inference

• Log-partition function: given f : X → R and a distribution q on X

log

∫

X

ef(x)dq(x) = sup
p probability

∫

X

f(x)dp(x)−D(p‖q)

– Used within variational inference (Wainwright and Jordan, 2008)



Log-partition functions and variational inference

• Log-partition function: given f : X → R and a distribution q on X

log

∫

X

ef(x)dq(x) = sup
p probability

∫

X

f(x)dp(x)−D(p‖q)

– Used within variational inference (Wainwright and Jordan, 2008)

• Upper-bound (assuming unit norm features)

b(f) = sup
p measure

∫

X

f(x)dp(x)−D(Σp‖Σq)

– If f(x) = 〈ϕ(x),Hϕ(x)〉, b(f) = sup
p measure

tr[HΣp]−D(Σp‖Σq)

– Computable by semi-definite programming



Log-partition functions and variational inference

• Simple example

– X = [0, 1], f(x) = cos(2πx), with log(
∫ 1

0
ef(x)dx) ≈ 0.2359

– ϕ̂(x)ω = q̂(ω)e2iπωx, for ω ∈ {−r, . . . , r}
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Relationship with optimization

• Adding a temperature: bε(f) = sup
p measure

∫

X

f(x)dp(x)−εD(Σp‖Σq)

• Convex duality

bε(f) = inf
M

ε log tr exp
(1

ε
M + logΣq

)

such that ∀x ∈ X, f(x) = 〈ϕ(x),Mϕ(x)〉

- Zero temperature limit: When ε tends to zero, bε(f) converges to

inf
M

λmax(M) such that ∀x ∈ X, f(x) = 〈ϕ(x),Mϕ(x)〉
⇔ inf

c∈R, A<0
c such that ∀x ∈ X, f(x) = c− 〈ϕ(x), Aϕ(x)〉

- Optimization formulation of Rudi, Marteau-Ferey, and Bach (2020)

- Based on “kernel sums-of-squares”
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Optimizing bounds

• Property: D(Σp‖Σq) is concave in the kernel

• Maximizing lower-bound on entropy

– Constraint: Λ < 0 such that ∀x ∈ X, 〈ϕ(x),Λϕ(x)〉 6 1

– Maximize D(Λ1/2ΣpΛ
1/2‖Λ1/2ΣqΛ

1/2)

• Illustration for X = [0, 1]
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Optimizing bounds

• Illustration for X = {−1, 1}d

– X = {−1, 1}d, and ϕ(x) = Diag(η)1/2
(

x

1

)

∈ R
d+1

– Maximize over η in the simplex in R
d+1

– Comparison with log-determinant bound of Jordan and Wainwright

(2003)
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Extensions

• f-divergences: D(p‖q) =
∫

X

f
(dp

dq
(x)

)

dq(x)

– Need f operator convex (KL, squared Hellinger, Pearson, χ2)

– All properties are preserved

• Other notions of quantum divergences (Matsumoto, 2015)

tr
[

A log(B−1/2AB−1/2)
]

> tr
[

A(logA− logB)
]

• Optimal lower-bound

inf
p,q probability measures

D(p‖q) such that Σp = A and Σq = B

– Tractable sum-of-squares relaxations

– See https://arxiv.org/abs/2206.13285 for details
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Conclusion

• Information theory with kernel methods

– Quantum entropies applied to covariance operators

– Precise relationships with Shannon entropies

– Applications to variational inference

• Extensions

– Large-scale algorithms (Bach, 2022b)

– Structured objects beyond finite sets and R
d

• References

– https://arxiv.org/abs/2202.08545

– https://arxiv.org/abs/2206.13285

– https://francisbach.com/information-theory-with-kernel-methods/
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