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P — {x :[0,1] — R : x continuous, x (0) = O} .
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P — {x :[0,1] — R : x continuous, x (0) = O} .

Definition (Concatenation)

Given x,y € P, define

x(2t), te|
x(1)+y(Rt—1), te]
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P — {x :[0,1] — R : x continuous, x (0) = O} .

Definition (Concatenation)

Given x,y € P, define

x (2t), te [0,3];
1

() (8) = {

Turn (P, ) into a group.
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Definition

xxy€eG Vx,y € G;
2. (Associativity)

(x*xy)*xz=xx*(yx*z), Vx,y,z € G.
3. (ldentity)

dee G xxe=exx=x VYxe€QG.
4. (Inverse)

Vx € G dy e G Xky=e



No inverse
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e(t)=0Vte[0,1].
Candidate for inverse:

S(t)=x(1-1t)—x(1).

Then

o x(20), te[0,3];
(XX)(t)_{x(2—2t), te] ?L

N

Unless x = e,
XX # e.
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All of the followings are ~ e:
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No inverse
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X? ~ ?X ~ e
X1~ X2,Y1 ~ Yo == X1y1 ~ X2)2.

All of the followings are ~ e:

\V4 |

M
B



Tree-like path

Cheracterinc B Definition (R-tree, Favre-Jonsson04)
(untruncated)

AL If 7 is a partially ordered set satisfying:
Bl 1.7 has global min. (call r) and pairwise min.
2. For any t € 7, the set below is totally ordered

{serT:s=t};

3. 3L : 7 — R>o map intervals in 7 bijectively to intervals in R.
If d(s,t)=L(t)+L(s)—2L(sAt),
then (7, d) is a R-tree.
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signature Let 7 be a R-tree. A loop in 7 is a continuous function
Vet ¢ : [0,1] — 7 such that ¢ (0) = ¢ (1).

Boedihardjo




Tree-like path

Characterising

I Definition (Loop in a tree)
(untruncated)

signature Let 7 be a R-tree. A loop in 7 is a continuous function
Horatio o : [07 1] — 7 such that qﬁ(O) = ¢(1)-

Boedihardjo

Definition (Tree-like Hambly-Lyons10)

A path x : [0,1] — V is tree-like if there exists:
1. aloop ¢ in a R-tree T;
2. a continuous function ¢ : 7 — V

X =1 o ¢.



Tree-like equivalence

Characterising
the set of
(untruncated)
signature
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We define a relation ~ on paths by x; ~ xp if
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xlyz is a tree-like path.
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Definition (Tree-like relation, Hambly-Lyons10)

e We define a relation ~ on paths by x; ~ xp if
Boedihardjo

x1 %o is a tree-like path.

Theorem (Hambly-Lyons10)

The relation ~ is an equivalence relation on the set of
bounded variation paths.
The set

RP = {[X]N :x:[0,1] — RY continuous, BV, x(0) = 0}

is called the (BV) Reduced path group.
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5(X)o1 = 1+/ g, + - .+/ dxg, ®. . .®dxg, +. . ..
’ 0 0<t1<...<tp<1
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1
5(X)o1 = 1+/ g, + - .+/ dxe, ®. . .@dxe, +. . ..
’ 0 0<t;<...<tp<1

Theorem (Hambly-Lyons10)
If x has bounded variation (BV),

S(x)o1 =1 < x is tree-like.
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1
5(x)o1 = 1+/ dxe, +. . -+/ dx, ®...@dxe,+. . ..
’ 0 0<t1<...<th<1

Theorem (Hambly-Lyons10)
If x has bounded variation (BV),

S(x)o1 =1 < x is tree-like.

Corollary

x1~xp < S5(x1)g1 =S (x)g, for BV paths.
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SRR A path x : [0,1] — RY is reduced if

length(x) = inf {Iength(oz) :S(a)g1 =S (X)O,l} .
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length(x) = inf {Iength(a) :S(a)g1 =S (X)O,l} .

Corollary (Hambly-Lyons10)

If x1, x> are reduced paths with bounded variation,

S(x1)p1 =S (x)o1 <= x1 =X up to translation, reparam.
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c(l)<o(2)<...<0a(n)
on+l)<...<o(n+k).
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c(l)<o(2)<...<0a(n)
on+l)<...<o(n+k).

Lemma (“Shuffle product formula”)

If x = (Xl,...,xd),

] i i i
/ dxgt .. .dxp - / dxg . dxg
0<t1<..<tp<t 0<t1 <. <ty <t

_ ia_l(l) ia'_l(n+k)
= Z / dxy bt .
aeSh(n,k) 0<t1<..-<t,—,+k<t



Linear functionals on signatures
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sienature Closure under products

1 2 1
( / dxg, dxt2> ( / dxt1>
O<ti<tr<t o<ti<t

_ 1 1 2 1 2 1
=2 / dx, dxg, dxg, + / dxg, dxg, dxg, -
O<ti<ta<ts<t O<ti<ta<ts<t

Closure under integration

t
/ ( / dx,il1 dxtz2 + / dxt11> dx?
0 0<ti<tra<u o<ti<u

_ 1 2 2 1 2
= / dx, dx;, dxg, + / dxg, dx;, .
O<ti<tr<tz<u 0<ti<tr<u
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Lemma (B. Geng Lyons Yang 16)

ot Ift = S (x)o, and t — S(y)o . both injective.
SRUREER [ x not reparametrisation of y, then
3 smooth functions Ly, Ly

/OlLl(S() ) dLa (S (s, ;é/ 1 (S (V)o,) ALz (S (o,

Corollary

Ift = S (x)o, and t — S(y)o . injective, then

S(x)o1=SW)o1 &= x reparametrisation of y.



|sometry

Characterising
the set of
(untruncated)

signature Theorem (Hambly-Lyons isometry)

Horatio

RN A path x : [0,1] — RY satisfies |x,|| = 1Vt and is C3, then

length (x) = limsup |

n—o0

I

(1)

nl/ dXt1®...®dth
<ty <...<tp<1

where || - || is the projective norm w.r.t. Euclidean norm.
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RN A path x : [0,1] — RY satisfies |x,|| = 1Vt and is C3, then

length (x) = limsup |

n—o0

I

(1)

nl/ dXt1®...®dth
<ty <...<tp<1

where || - || is the projective norm w.r.t. Euclidean norm.

Open problem

1. Is limsup in (1) in fact a lim?
2.Extend isometry (1) to reduced bounded variation paths.
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Boedihardjo many n such that

/ dXt1®---®dth:0.
o<t1<...<tp<1l
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. If x is a non tree-like, B.V. path, then there is at most finitely
Boedihardjo many n such that

/ dXt1®...®dth:O.
o<ty <...<tp<1

Theorem (Chang-Lyons-Ni)

If x is a B.V. path, then the following limit exists:

n!/ dxy, ® ... ® dx,
0<t; <...<tp<1

) 7
lim
n—oo
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In+1 In+k
/ . / dxg ™A
0<t1<...<tp<t o<1 <...<t <t

o "071(1) "afl(n+k)
= Z / dxy, codxg .
oeSh(n,k) 0<ty <...<tppi<t

Therefore,

; ; j i
/ dxg ... dxé:‘ . / dxg . dxg
0<t1 <...<tn<t 0<t1 <. <ty <t

i1 i1
<|Sh(n, k)| max / dx @ dx,,,, S
o€Sh(nk) | Jo<ty<..<th k<t




Proof of isometry (special case)

Do [l Lemma (Hambly-Lyons10)

(untruncated)

signature Let Yt)\ be the solution to

Horatio
Boedihardjo

dY) =M (dx) Y, Y3 =v,
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og IV _ :

lim sup <
n—o0

A—00

nl/ dXt1®...®dth
0<t1<...<tp<1
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dY) =M (dx) Y, Y3 =v,

Wlth HV” =1. IfHAHRd—)L(]R",R") = ]., then

. log || Y . n
Imsupm < lim n!/ dxy ® ... ®dxy,
A—00 H=CQ 0<t1<...<th<1
[
Yf:v+...+A"/ Adx, ... Adxg,v .. ..
0<t1<...<tp<1
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1

= length (x) .
(2)

lim sup
n—o0

nl/ dXt1®...®dth
0<t1<...<tp<1l
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= length (x) .
(2)

lim sup
n—o0

n!/ dxy, ® ... ® dx,
0<t;<...<tp<1

Theorem (B.-Geng To Appear)
Ifd =2, ||x'|| =1 and

vt €[0,1],36,a, st Arg(x}) € (a,a+m—¢) Vs € (t—6,t+ )

, then (2) holds.
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lim sup "= ¢t (3)

n—oo

’(f)!/ dBy, ®...®dB:,
2 0<t1<...<th<t

Theorem (B.-Geng-Souris20)

If x; = et(Prt-+Pum) \where P; is Lie polynomial of degree i,
there exists C > 0 depending on M, d,

n

ClIPm|l <limsup H (i)!/ dx, ® ... ® dxs,
M o<t <...<tp<t

n—o00

<[|Pmll-
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{S(X)Q1 - x :[0,1] — RY, continuous, BV}

as a subset of tensor algebra?

Lemma (Chen)
Define Ly =RY and if [a,b] =a® b — b ® a,

Lpv1 = span{[a, bl:ac RY, b e L,,}.

Then
log S (x)o1 € M2y L
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signature Lyons-Sidorova conjecture (modified)
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log S (x)o1 = Z In,

n=1

where [, € L,, then 3\ such that

D N|llnll = o0
n=1

unless x is conjugate and tree-like equivalent to a straight line.
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Lyons-Sidorova conjecture is true for the path (x,y) if there
exists \ such that if

dx; d
A _ t Yt A A
dYt—)\<dyt —dxt)Yt’ Y{ =1,

then Y{ ¢ exp (s (2;R?)).



Hambly-Lyons open problems on signatures

Characterising
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Problem 1.10: Uniqueness problem
Problem 1.11: Inversion problem
Problem 1.12: Image problem.



